
BIO 244: Unit 1

Survival Distributions, Hazard Functions, Cumulative

Hazards

1.1 Definitions:
The goals of this unit are to introduce notation, discuss ways of probabilisti-
cally describing the distribution of a ‘survival time’ random variable, apply
these to several common parametric families, and discuss how observations
of survival times can be right-censored.

Suppose T is a non-negative random variable representing the time until some
event of interest. For example, T might denote:

• the time from diagnosis of a disease until death,

• the time between administration of a vaccine and development of an in-
fection,

• the time from the start of treatment of a symptomatic disease and the
suppression of symptoms.

We shall assume that T is continuous unless we specify otherwise. The prob-
ability density function (pdf) and cumulative distribution function (cdf) are
most commonly used to characterize the distribution of any random variable,
and we shall denote these by f(·) and F (·), respectively:

pdf : f(t)

cdf : F (t) = P (T ≤ t)

}
F (0) = P (T = 0).
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Because T is non-negative and usually denotes the elapsed time until an
event, it is commonly characterized in other ways as well:

Survivor function:

S(t)
def
= 1− F (t) = P (T > t) for t ≥ 0.

The survivor function simply indicates the probability that the event of in-
terest has not yet occurred by time t; thus, if T denotes time until death,
S(t) denotes probability of surviving beyond time t.

Note that, for an arbitrary T , F (·) and S(·) as defined above are right con-
tinuous in t. For continuous survival time T , both functions are continuous
in t. However, even when F (·) and S(·) are continuous, the nonparametric
estimators, say F̂ (·) and Ŝ(·), of these that we will consider are discrete distri-
butions. For example, F̂ (·) might be the c.d.f. corresponding to the discrete
distribution that places mass m1,m2, · · · ,mk at certain times τ1, τ2, · · · , τk.
Thus, even though F (·) is continuous, its estimator F̂ (·) is (only) right con-
tinuous, and thus its value at a certain time point, say τ2, will be m1 +m2 if
we define the c.d.f. to be right continuous (but equal to m1 if we had defined
the c.d.f. to be left continuous).

Hazard function:

h(t)
def
=

lim
h ↓ 0 P [t ≤ T < t+ h|T ≥ t]

h

=
f(t)

S(t−)

with S(t−) = lims↑t S(s). That is, the hazard function is a conditional den-
sity, given that the event in question has not yet occurred prior to time t.
Note that for continuous T , h(t) = − d

dt ln[1− F (t)] = − d
dt lnS(t).

Cumulative hazard function:

H(t)
def
=

∫ t

0

h(u)du t ≥ 0.
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For continuous T ,

H(t) = −ln[1− F (t)] = −ln S(t).

Note that for continous T ,

S(t) = e−H(t)

f(t) = h(t)e−H(t).

Note 1: Note that h(t)dt = f(t)dt/S(t) ≈ P[fail in [t,t+dt) | survive until
t]. Thus, the hazard function might be of more intrinsic interest than the
p.d.f. to a patient who had survived a certain time period and wanted to
know something about their prognosis.

Note 2: There are several reasons why it is useful to introduce the quantities
h(t) and H(t):

• Interpretability: Suppose T denotes time from surgery for breast cancer
until recurrence. Then when a patient who had received surgery visits
her physician, she would be more interested in conditional probabilities
such as “Given that I haven’t had a recurrence yet, what are my chances
of having one in the next year” than in unconditional probabilities (as
described by the p.d.f.).

• Analytic Simplifications: When the data are subject to right censoring,
hazard function representations often lead to easier analyses. For exam-
ple, imagine assembling a cohort of N men who just have turned 50 years
of age and then following them for 1 year. Then if d of the men die dur-
ing the year of follow-up, the ratio d/N estimates the (discrete) hazard
function of T=age at death. We will see that H(·) has nice analytical
properties.

• Modeling Simplifications: For many biomedical phenomena, T is such
that h(t) varies rather slowly in t. Thus, h(·) is well-suited for modeling.

Note 3: It is useful to think about real phenomena and how their hazard
functions might be shaped. For example, if T denotes the age of a car when it
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first has a serious engine problem, then one might expect the corresponding
hazard function h(t) to be increasing in t; that is, the conditional probabil-
ity of a serious engine problem in the next month, given no problem so far,
will increase with the life of the car. In contrast, if one were studying infant
mortality in a region of the world where there was poor nutrition, one might
expect h(t) to be decreasing during the first year of life. This is known to
be due to selection during the first year of life. Finally, in some applications
(such as when T is the lifetime of a light bulb), the hazard function will
be approximately constant in t. This means that the chances of failure in
the next short time interval, given that failure hasn’t yet occurred, does not
change with t; e.g., a 1-month old bulb has the same probability of burning
out in the next week as does a 5-year old bulb. As we will see below, this
’lack of aging’ or ’memoryless’ property uniquely defines the exponential dis-
tribution, which plays a central role in survival analysis.

1.2 Common Families of Survival Distributions

Exponential Distribution: denoted T ∼ Exp(λ). For t > 0,

f(t) = λe−λt for λ > 0 (scale parameter)

F (t) = 1− e−λt S(t) = e−λt

h(t) = λ ← constant hazard function

H(t) = λt

characteristic function:

ϕ(u) = E[eiuT ] =
λ

λ− iu

∴ E[T r] =
ϕ(r)(u)

ir

∣∣∣∣
u=0
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• E(T ) =
1

λ

• V (T ) =
1

λ2

• “Lack of Memory”: P [T > t] = P [T > t+ t0|T > t0]
for any t0 > 0 (probability of surviving another t time units does not
depend on how long you’ve lived so far)

• Also, the exponential family is closed to scale changes; that is: T ∼
Exp(λ), c > 0⇒ c · T ∼ Exp(λ/c).

2-Parameter Gamma Distribution:

The 2-parameter gamma distribution, which is denotedG(α, λ), can be viewed
as a generalization of the exponential distribution. It arises naturally (that
is, there are real-life phenomena for which an associated survival distribution
is approximately Gamma) as well as analytically (that is, simple functions of
random variables have a gamma distribution).

f(t) =
λαtα−1e−λt

Γ(α)
for t > 0.

Parameters λ > 0 and α > 0

Γ(α) = gamma func. =

∫ ∞

0

tα−1e−t dt.

• characteristic function: ϕ(u) =

(
λ

λ− iu

)α

• E(T ) =
α

λ
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• V (T ) =
α

λ2

• G(1, λ) = Exp(λ)

• T1 ∼ G(α1, λ), T2 ∼ G(α2, λ), T1 ⊥ T2 =⇒ T1 + T2 ∼ G(α1 + α2, λ)

• if α = k
2 (k = integer), then 2λT ∼ χ2

k.

The following plot shows the shape of the Gamma hazard function for dif-
ferent values of the shape parameter α. The case α=1 corresponds to the
exponential distribution (constant hazard function). When α is greater than
1, the hazard function is concave and increasing. When it is less than one,
the hazard function is convex and decreasing.

t

h(t)

Gamma

α > 1

α = 1

α < 1

Weibull Distribution:
The Weibull distribution can also be viewed as a generalization of the expo-
nential distribution, and is denoted W (λ, p). It is defined as follows:

F (t) = 1− e−(λt)
p

f(t) = pλptp−1e−(λt)
p

h(t) = pλptp−1 (power of t)

H(t) = (λt)p.

t > 0
λ > 0 (scale)
p > 0 (shape)
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As shown in the following plot of its hazard function, the Weibull distribution
reduces to the exponential distribution when the shape parameter p equals 1.
When p > 1, the hazard function is increasing; when p < 1 it is decreasing.

0  
0  

t

h(
t)

p<1

p>2

1<p<2

p=1

Weibull hazard function for p<1 (decreasing), p=1
(constant)
1<p<2 (concave increasing), and p>2 (convex increasing)

The following properties of the Weibull distribution are easily verified.

• T ∼ W (λ, p), c > 0 =⇒ cT ∼ W (λc , p)

• T ∼ W (λ, p) =⇒ T p ∼ Exp(λp)

• W (λ, 1) = Exp(λ).

Note: The Weibull distribution is sometimes parameterized as H(t) = λtp

instead of H(t) = (λt)p, in which case the expressions and properties above
take on a somewhat different form.

1.3 Some Properties of Survival Time Random Variables

• T1, T2, . . . , Tn i.i.d. ∼ Exp(λ) =⇒ T1 + T2 + · · ·+ Tn ∼ G(n, λ)

and 2λ(T1 + · · ·+ Tn) ∼ χ2
2n
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• Suppose T1, T2, · · · , Tn are i.i.d. Exp(λ), and let T(1), T(2), . . . , T(n) de-
note the corresponding order statistics.

For i=1,2,...,n, define

Zi = (n− i+ 1)
[
T(i) − T(i−1)

]
where T(0) = 0. That is,

i.e., Z1 = nT(1)

Z2 = (n− 1)[T(2) − T(1)]
...

Zn = T(n) − T(n−1).

Z1, Z2, · · · , Zn are sometimes called ‘Normalized Spacings’. Imagine the
’window’ in time extending from t=0 until t=T(1). The total amount of
lifetime observed during this window is nT(1), since all n subjects are alive
througout this time period. This is just Z1. Next consider the ’window’
extending from t=T(1) to T(2). The total observed time in this window is
(n− 1)[T(2)−T(1)], since n-1 subjects survive through this window. This
is just Z2. Finally, the total observed time in the window extending from
t=T(n−1) to T(n) is just [T(n) − T(n−1)] = Zn, since only 1 subject passes
through this window. The normalized spacings have an interpretation in
terms of accumulated lifetime observed in specific cross-sectional views
of the data. When the original Ti are i.i.d. exponential(λ) random vari-
ables, it can be shown that Z1, Z2, . . . , Zn are also i.i.d. ∼ Exp(λ) (Ex-
ercise 4). That Z1, which is n times the “gap” until the first failure, and
Zn, which is the gap between the next-to-last and last failure, have the
same distribution speaks to the right tail of the exponential distribution.

• Poisson Process with parameter λ:

N(t) = # events occuring in (0, t) ∼ Pois(λt).
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Define Ti = time between (i− 1)st and ith events, i = 1, 2, . . .

(0th event = time 0).

Then [N(t) = 0] = [T1 > t] =⇒ P (T1 > t) = ē(λt) (λt)
0

0! = ēλt

i.e., T1 ∼ Exp(λ).

It can also be shown that T1, T2, . . . are i.i.d. Exp(λ).

• Suppose T is continuous and has cumulative hazard function H(·).

Consider
Y

def
= H(T ).

Then
Y ∼ Exp(1) (unit exponential!).

See Exercise 5.

Example 1: T ∼ W (λ, p) =⇒ H(t) = (λt)p.

Thus, H(T ) ≡ (λT )p ∼ Exp(1).

This result is analogous to what is sometimes called the ”Probability
Integral Transformation” for any continuous random variable. That is,
if X has a continuous distribution and its c.d.f. is denoted F (·), then the
random variable F(X) has the Uniform(0,1) distribution. As we will see,
it is useful for generating realizations from specific survival distributions
and for computing residuals from regression models for survival data.
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1.4 Right Censored Observations
A common feature of survival (or time-to-event) data is the presence of right
censored observations. We briefly review settings in which right-censored
data can arise and introduce notation to distinguish the underlying T from
what is actually observed.

Among the earliest forms of right censoring that were recognized and ana-
lyzed by statisticians arose in industrial life-testing settings, where the goal
was to learn about the lifetime distribution of a manufactured item, and to
find ‘cost effective’ ways of doing so. Two designs were commonly used, which
we illustrate for the setting where the manufactured item is a light bulb and
interest centers on the distribution function, say F (·), of the time until a bulb
burns out:

Type I Censoring Suppose that we “plug in” n bulbs at time 0, and
then observe them for c time units, noting the times until burn out for those
that burn out by time c.

For the ith bulb, let Ti = true lifetime.

Note that we observe Ti if and only if Ti < c;
otherwise, we know only that Ti exceeds c (right censored).

i.e., T1, . . . , Tn i.i.d. ∼ F ,

but in general we observe only (Ui, δi) for i = 1, 2, . . . , n

where Ui = min(Ti, c) = observed portion of Ti

and δi = 1(Ti ≤ c) = censoring indicator.

e.g., Suppose c = 10:

Then if Ti = 4, we observe (Ui, δi) = (4, 1)
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But if Ti = 17, we would observe (Ui, δi) = (10, 0).

Thus, the ‘data’ from such a study would involve a (random) number, say
r, of uncensored lifetimes, all of which are less than c, and n − r censored
observations at time c.

Type II Censoring Suppose instead that we “plug in” n bulbs, and
then observe things until r (some pre-determined #) bulbs fail. Here we end
up with r uncensored lifetimes and n− r censored (at time c) lifetimes, but
unlike Type I censoring, here r is a constant. Note that with this type of
study, we are really observing the first r order statistics from a sample of size
n.

i.e., T1, T2, . . . , Tn i.i.d. ∼ F (as with Type I) ,

and we observe
T(1,n), T(2,n), . . . , T(r,n),

where T(i,n) = ith smallest from among n times.

Note that we can also write the observation for bulb i in the form (Ui, δi).
However, now Ui and δi depend on the values of the Tj for j ̸= i. Thus,
the n pairs (U1, δ1), (U2, δ2), · · · , (Un, δn) are dependent for Type II censoring,
whereas they are independent for Type I censoring.

Random Censoring (commonly arising in biostatistics)
Define

c1, c2, . . . , cn constants

T1, T2, . . . , Tn i.i.d. ∼ F.

Then suppose we observe (U1, δ1), . . . , (Un, δn),

where Ui = min(Ti, ci)

δi = 1(Ti ≤ ci).
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For example, such censoring commonly arises in clinical trials where patients
enroll sequentially at different points in calendar time, where ’survival’ is
measured from enrollment, and where the data are ’analyzed’ at some later
point, say t∗, in calendar time. That is,

• Ti = time from entry into trial until relapse of disease for patient i, and

• ci=time between enrollment of patient i and calendar time t∗

As we will see later in the course, inferences usually proceed as if the ci are
known constants. However, for purposes of study design or when studying
the asymptotic properties of estimators and tests, they are usually regarded
as i.i.d. random variables (say, C1, C2, · · · , Cn).

Key Assumption: Censoring is noninformative.

The large majority of statistical methods for failure time data assume that
censoring acts ’noninformatively’ of failure time. Loosely speaking, this
means that being censored at time c tells us only that T > c. In terms
of the potential censoring times Ci, noninformative censoring is achieved if
Ci is independent of Ti, i = 1, · · · , n; that is, if Ci ⊥ Ti. Mathematically
weaker conditions have also been proposed and investigated (cf: Kalbfleisch
& Prentice, p. 212-214).

Examples:

Censoring that is clearly informative: Suppose that T denotes time to
death in a study and that subjects have an increased risk of ’dropping out’
of the study (and thereby yielding a censored observation of survival time)
if their disease status worsens. In the extreme case, subjects might drop out
very soon prior to dying. In such cases, it is intuitively clear that a statistical
method that assumes noninformative censoring might be severely biased and
underestimate the true underlying hazard.

12



Censoring that is often noninformative: Suppose that survival time is
censored because a subject in a study has not yet failed by the pre-scheduled
date for the analysis of the study data. Here censoring is often noninforma-
tive.

Less clear situation: Suppose the survival times of subjects are censored
if they move out of the study area and thereby can no longer be followed for
survival. Can you envision specific circumstances when such censoring is and
is not informative?
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Exercises

Prove

1. T ∼ Exp(λ), c > 0 =⇒ cT ∼ Exp(λ/c)

2. T1, T2, . . . , Tn i.i.d. Exp(λ) =⇒
n∑

i=1

Ti ∼ G(n, λ)

3. T ∼ W (λ, p) =⇒ T p ∼ Exp(λp)

4. T1, . . . , Tn i.i.d. Exp(λ),

Zi
def
= (n− i+ 1)[T(i) − T(i−1)] =⇒ Zi are i.i.d. Exp(λ)

HINT: Find distribution of T(1), T(2), . . . , T(n) and then consider
Jacobian of transformation from these to Z1, Z2, . . . , Zn

5. Suppose that T is continuous distribution with cumulative hazard func-
tion H(·). Show that H(T ) ∼ Exp(1).

6. A flexible parametric family is the piecewise exponential. For known
constants 0 < v1 < v2 < · · · < vk, the hazard function is given by

h(t) = λj for vj−1 ≤ t < vj

for j = 1, 2, . . . , k + 1, where vo = 0 and vk+1 =∞.

h(t)

...

...v v v v v1 2 3 4 k

t
1

2
3

k+1
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Since any smooth function can be closely approximated by a step-function
for sufficiently large k and choice of v1, . . . , vk, it is clear that this family
is quite flexible.

−→ Find an expression for f(t) and S(t) for an arbitrary value of
t ε [vj−1, vj).

7. Suppose T has a discrete distribution, with p.m.f.

f(wj) = P [T = wj] = pj j = 1, 2, . . . ,

where 0 ≤ w1 < w2 < · · · are known.

Then the hazard function can be defined as hj = P (T = wj|T ≥ wj)
for j = 1, 2, . . . Using this notation, show that the p.m.f. and survivor
function for T can be expressed as

f(t) =

 hj

j−1∏
l=1

(1− hl) for t = wj

0 otherwise

and

S(t) =
∏
j s.t.

wj≤t

(1− hj)

8. For a continuous survival time r.v. T , verify that

h(t) = f(t)/S(t)

= − d
dtln[S(t)],

that

S(t) = e−H(t),

and that

f(t) = e−H(t) · h(t)
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9. Suppose (T,C) denote a survival time and potential censoring time, re-
spectively, and that Z is a covariate (such as a binary indicator of treat-
ment group). Suppose that T ⊥ C | Z. Does it follow that T ⊥ C?
Suppose on the other hand that T ⊥ C. Does it follow that T ⊥ C | Z?
Prove the statements that are true and give specific examples if not.

10. Show that if k is an integer and T ∼ G(k2 , λ) then 2λT ∼ χ2
k.

11. T time to death. Suppose survival times of subjects are censored if they
move out of the study area and thereby can no longer be followed for
survival. Give examples where one could envision that such censoring is
and is not informative.

12. Show that S1(t) = [S0(t)]
θ is equivalent to h1(t)/h0(t) = θ (proportional

hazards).
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Additional Reading

For more motivating examples, see Cox & Oakes (1984) and Klein &Moeschberger
(1997). If you are interested in learning more about early statistical methods
for survival data that were motivated by industrial life-testing situations, see
Lawless (2003). For a more technical discussion of informative censoring, see
Lagakos (1979) and the text by Kalbfleisch & Prentice (2002). We will en-
counter the importance of noninformative censoring later in the course when
we show that most of the key statistical methods for analyzing survival data
can be expressed in terms of martingale processes.
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