
BIO 244: Unit 10

Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

This section introduces Lebesgue-Stieltjes integrals, and defines two impor-
tant stochastic processes: a martingale process and a counting process. It
also introduces compensators of counting processes.

Definition: Suppose G(·) is a right-continuous, nondecreasing step func-
tion having jumps at x1, x2, . . . . Then for any function f(·), we define the
integral

∫ b

a

f(x) d G(x)
def
=

∑
j:

a<xj≤b

f(xj) · (G(xj)−G(xj−)) =
∑

j:

a<xj≤b

f(xj) ·∆G(xj),

where ∆G(xj) = G(xj)−G(xj−1) . This is called a Lebesgue-Stieltjes integral.

If G(·) is continuous with derivative g(·), then we define
∫ b

a f(x)dG(x) to be

the Lebesgue integral
∫ b

a f(x)g(x)dx. Thus, we can define a Lebesgue-Stieltjes
integral

∫
f(x)dG(x) for G(·) either absolutely continuous or a step function.

Let’s illustrate what this gives in several examples:

Example 10.1: Survival data; 1-sample problem

(Ui, δi) i = 1, 2, . . . , n.

Define the stochastic process G(·) by:

G(t)
def
=

n∑
i=1

1(Ui ≤ t, δi = 1)

= # of failures observed on or before t.
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As before, let τ1 < τ2 < · · · < τK denote the distinct failure times,

dj = # failures at τj

Y (τj) = # at risk at τj.

Then, for example, if f(t) = t,

∫ ∞

0

f(t) d G(t) =
K∑
j=1

f(τj) ∆G(τj)

=
K∑
j=1

τj · dj.

Or, if f(t) =
n∑

i=1

1 (Ui ≥ t) = # at risk at t=Y(t),

∫ ∞

0

f(t) d G(t) =
K∑
j=1

f(τj) ∆G(τj)

=
K∑
j=1

Y (τj) · dj.

Example 10.2: Survival data; 2-sample problem

(Ui, δi, Zi) i = 1, 2, . . . , n; Zi =

{
0 group 0
1 group 1.

Define, for l = 0, 1

Nl(t) =
n∑

i=1

1 (Ui ≤ t, δi = 1, Zi = l) # failures in group l

Yl(t) =
n∑

i=1

1 (Ui ≥ t, Zi = l) # at risk in group l.
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That is, Nl(t) and Yl(t) are the number of observed failures by time t and
number at risk at time t in group l. Using the same notation as when we
introduced the logrank test, consider

W
def
=

∫ ∞

0

Y0(t)

Y0(t) + Y1(t)
dN1(t) −

∫ ∞

0

Y1(t)

Y0(t) + Y1(t)
dN0(t).

Then

W =
K∑
j=1

Y0(τj)

Y0(τj) + Y1(τj)
∆N1(τj) −

K∑
j=1

Y1(τj)

Y0(τj) + Y1(τj)
∆N0(τj)

=
K∑
j=1

[
Y0(τj)

Y (τj)
d1j −

Y1(τj)

Y (τj)
d0j

]

=
K∑
j=1

Y0(τj)d1j − Y1(τj)(dj − d1j)

Y (τj)
=

∑
j

Y (τj)d1j − djY1(τj)

Y (τj)

=
∑
j

(
d1j − dj ·

Y1(τj)

Y (τj)

)
=

∑
j

(Oj − Ej);

i.e., W is just the numerator of logrank statistic.

Later we will see that this expression is very useful to study the properties
of the logrank test.

Example 10.3: 1-sample problem

(Ui, δi) i = 1, 2, . . . , n.

Consider

Λ̂(t) =

∫ t

0

dN(u)

Y (u)
,
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where

N(t) =
n∑

i=1

1 (Ui ≤ t, δi = 1)

and

Y (t) =
n∑

i=1

1 (Ui ≥ t).

Then it is easily shown, using the notation used for the Kaplan-Meier esti-
mator, that

Λ̂(t) =
∑
τj≤t

dj
Y (τj)

= Nelson-Aalen estimator.

Note 1: The Lebesgue-Stieltjes integrals in these examples involve random
quantities and hence are called stochastic integrals.

Note 2: The examples illustrate that some of the statistics we considered in
Units 5 and 6 can be written as stochastic integrals. In subsequent units, we
will consider theorems that will enable us to determine the properties of such
stochastic integrals, and thus be able to prove useful results for the statistics
considered earlier.

Let X(·) = {X(t) : t ≥ 0} be a stochastic process, and let Ft denote the
σ–algebra generated by the random variables (X(u) : 0 ≤ u ≤ t). The in-
creasing family of σ-algebras (Ft : t ≥ 0) is called a filtration, and we say
that X(·) is adapted to (Ft : t ≥ 0), since once Ft is known, X(t) is known
(or: X(t) is Ft-measurable).

For any t ≥ 0 and s ≥ 0, define

E[X(t+ s) | Ft] = E[X(t+ s) | X(u), 0 ≤ u ≤ t].

The values (X(u) : 0 ≤ u ≤ t) are called the history of X(·) from 0 to t.
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For more about conditional expectations we refer to the Appendix.

Definition: Suppose X(·) is a right-continuous stochastic process with
left-hand limits that is adapted to (Ft). X(·) is a martingale if

(a) E |X(t)| <∞ ∀t, and

(b) E[X(t+ s) | Ft]
a.s.
= X(t) ∀t ≥ 0, s ≥ 0.

The idea is that given the information at time t (Ft), the expected value of
X(t + s) is equal to X(t). Again, for more about conditional expectations
see the Appendix.

Also, X(·) is called a sub-martingale if “=” in (b) is replaced by “≥”, and
called a super-martingale if “=” in (b) is replaced by “≤”.

Note 1: As before, by saying that X(·) has left hand limits, we mean that
with probability 1, the limit of X(u) as u ↑ t exists for every t. I.e., there
exists set A with probability 0 (not depending on t) such that on Ω \ A, for
every t, the limit of X(u) as u ↑ t exists.

Note 2:Martingale processes are commonly used in economics to model fluc-
tuations in financial processes. Here the response is some continuous random
quantity such as the value of a commodity. In failure time applications, the
martingales we will deal with usually consist of the arithmetic difference of a
counting process and a so-called “compensator” process.

Example 10.4: Let us consider a random walk process, which is a simple
example of a discrete time martingale. Suppose that Y1, Y2, . . . are i.i.d. ran-
dom variables satisfying

Yi =

{
+1 w.p. 1/2
−1 w.p. 1/2

=⇒ E(Yi) = 0, V ar(Yi) = 1.
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Define

X(0) = 0, and

X(n) =
n∑

j=1

Yj n = 1, 2, . . .

It follows that E(X(n)) = 0 and V ar(X(n)) = n. Also, knowing

(X(u) : 0 ≤ u ≤ n) = (X(1), . . . , X(n)),

is equivalent to knowing (Y1, . . . , Yn). Hence, Fn = σ(X(1), . . . , X(n)) =
σ(Y1, . . . , Yn).

Clearly, E | X(n) |<∞ for each n. Also,

E[X(n+ k) | Fn] = E

[
n+k∑
j=1

Yj | X(1), . . . , X(n)

]

= E

[
n+k∑
j=1

Yj | Y1, . . . , Yn

]

= E [(Y1 + · · ·+ Yn) + (Yn+1 + · · ·+ Yn+k) | Y1, . . . , Yn]

= Y1 + · · ·+ Yn + E [Yn+1 + · · ·+ Yn+k | Y1, . . . , Yn]

= Y1 + · · ·+ Yn

= X(n)

Thus, X(·) is a martingale.

Note 1: We could have made X(·) a continuous-time process by taking

X(t)
def
=

[t]∑
j=1

Yj, where [t] = greatest integer ≤ t.
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Note 2: This example illustrates that, given the history of a martingale
process up to time t, the expected value at some future time is X(t).

Note 3: It follows from the definition of a martingales (taking t = 0) that
E(X(s)) = E(X(0)) when X(·) is a martingale. That is, the mean function
of a martingale process is constant. In most of our applications, X(0)=0, and
hence our martingales will have a mean function that is identically zero.

Note 4: Martingales have uncorrelated increments (Exercise).

Definition: A stochastic process N(·) = (N(t) : t ≥ 0) is called a
counting process if

• N(0) = 0

• N(t) <∞, all t

• With probability 1, N(t) is a right-continuous step function

with jumps of size +1.

Example 10.5: 1-sample survival data (assume no ties). Observations:
(Ui, δi) i = 1, 2, . . . , n. Define the process N(·) by

N(t)
def
=

n∑
i=1

1 (Ui ≤ t, δi = 1)

= # observed failures in [0, t].

Then N(·) is a counting process.
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Example 10.6: Now fix i and define the process Ni(·) by

Ni(t)
def
= 1 (Ui ≤ t, δi = 1)

=

{
0 no failure by t

1 failure observed on/before t.

Then Ni(·) is a counting process.

Let’s focus on a single subject, and for simplicity drop the subscript i. Sup-
pose T denotes survival time and denote the c.d.f. and hazard functions for
T by F (·) and λ(·). As before, we denote the observation for this subject by
(U, δ) and assume that censoring is noninformative.

Define the processes N(·) and Y (·) by

N(t)
def
= 1 (U ≤ t, δ = 1)

Y (t)
def
= 1 (U ≥ t) = ‘at risk’ indicator.

Note that N(t) is just an indicator that a failure is observed by (that is, on
or before) time t, and Y(t) is an indicator of whether the subject is at risk
at time t. What do these look like?
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Observe failure at U=u

-
0

1Y (·)

u
c
s

t

-
0

1N(·)

u

s
c

t

Observe censoring at U=u

-
0

1Y (·)

u
c
s

t

-
0

1N(·)

u t
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Note 1: Suppose that N(·) is any counting process adapted to some filtration
{Ft : t ≥ 0}. This means that once Ft is known, N(t) is known, or more
accurately, that N(t) is Ft-measurable. Then since N(·) is nondecreasing,
N(t+s) ≥ N(t) for every s and t and hence E[N(t + s) | Ft] ≥ N(t). Thus
every counting process is a submartingale.

Note 2: Notice that the counting process N(t)=1(U≤ t, δ=1) has to do with
observing a failure on or before time t. This is not the same as failing on
or before t (without regard to censoring status), which is governed by the
hazard function λ(·). To see the connection between these, note that

λ(t) ·∆t =
f(t)

S(t−)
∆t

≈ P [t ≤ T < t+∆t | T ≥ t]

= P [t ≤ T < t+∆t | T ≥ t and C ≥ t] (because of noninformative censoring)

= P [t ≤ T < t+∆t | U ≥ t]

= P [t ≤ T < t+∆t | Y (t) = 1]

= P [N(t+∆t−)−N(t−) = 1 | Y (t) = 1]

= E [N(t+∆t−)−N(t−) | Y (t) = 1] (since N(t+∆t−)−N(t−) = 0 or 1).

Thus, conditional on Y (t) = 1, λ(t) ·∆t is the expected change in the count-
ing process N(t) at time t.
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(continuation of Note 2)

Now consider the stochastic process A(·), defined by

A(t)
def
=

∫ t

0

Y (u) λ(u)du.

Then

E(N(t)) = P (N(t) = 1)

=

∫ t

0

λ(u)P (U ≥ u)du ←−

=

∫ t

0

λ(u)E(Y (u))du

= E

(∫ t

0

λ(u)Y (u)du

)
= E(A(t)).

if U = min (T,C) and C ∼ G(·),
P (N(t) = 1) = P (T ≤ t and C ≥ T )

=

∫ t

0

∫ ∞

u
f(u)g(c)dc du

=

∫ t

0
f(u)(1−G(u))du

=

∫ t

0
λ(u)(1− F (u))(1−G(u))du

=

∫ t

0
λ(u)P (U ≥ u)du

Thus, M(t)
def
= N(t)− A(t) has mean 0.

Note: A(·) is called the compensator process corresponding to N(·). It
represents the cumulative risk of being observed to fail by time t, whereas
N(t) is the indicator of whether we observe a failure by time t. As we will
see later, the difference between these two processes, M(·), is a zero-mean
martingale.
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Example: Suppose T ∼ Exp(λ)

=⇒ λ(t) = λ.
Then

A(t) =

∫ t

0

λ(u)Y (u)du = λ

∫ t

0

Y (u)du

= λ ·
∫ t

0

1{u≤U} du

= λ · min (t, U).

t

slope = λ

U
0

A(t)

Note that N(t) = 1{U≤t,δ=1}. Thus, N(t) = 0 for t < U and for t ≥ U ,
N(t) = 1 if δ = 1 or N(t) = 0 if δ = 0.

Thus, we can combine N(·) and A(·) to get M(·), as shown in the following
picture.
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M(t)

when

δ = 1

-0

1− λU

−λU

U
HHHHHHHHHH

s

c
t

M(t)

when

δ = 0

-0

−λU

U
HHHHHHHHHH

t

For t fixed, M(t) could be

• < 0 (if t < U and sometimes even if t > U)

• > 0 (sometimes if t ≥ U).

For every fixed t, E(M(t)) = 0.
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Exercises

1. With Yl(·) and Nl(·) (l = 0, 1) defined as in example 2 on page 3,
re-express the following in the old notation:

W ∗ =

∫ ∞

0

Y1(u)dN0(u) −
∫ ∞

0

Y0(u)dN1(u)

2. Consider the 2-sample problem with (Ui, δi, Zi), i = 1, 2, . . . , n defined
in the usual way. Define

Yi(t) = 1 (Ui ≥ t)

Ni(t) = 1 (Ui ≤ t, δi = 1)

Simplify

n∑
i=1

∫ ∞

0

Zi −

n∑
l=1

Yl(s)Zl

n∑
l=1

Yl(s)

 dNi(s)

3. Suppose Y1, Y2, . . . , Yn, . . . are iid with

Yi =

{
+1 w.p. 1/2
−1 w.p. 1/2

Define X(0) = 0 and, for t > 0, X(t) =

[t]∑
j=1

Yj.

Define Ft the filtration generated by X.

Show that X(·) is a martingale with respect to Ft.
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4. Let (Ui, δi), i = 1, 2, . . . , n denote a set of censored survival data.

Define

Ni(t) = 1 (Ui ≤ t, δi = 1) t ≥ 0

Yi(t) = 1 (Ui ≥ t) t ≥ 0

Then with N(·) def
=

n∑
i=1

Ni(·)

and A(·) def
=

n∑
i=1

{∫ ·

0

λ(u)Yi(u)du

}
,

let M(·) = N(·)− A(·).

Suppose λ(t) = λ, as in the example on page 13, and that we observe

n = 8 and (Ui, δi) = (4.7, 0), (11.6, 0), (2.1, 1), (5.2, 1), (3.4, 0), (5.9, 1),

(17.3, 0), and (12.1, 1).

Plot N(·), A(·), and M(·) for these data, assuming λ = .06.

5. Suppose that N(·) denotes a homogeneous Poisson Process with param-
eter λ > 0. Thus, N(t) represents the number of events that occur by
time t. Define the process M(·) by M(t) = N(t)−λt. Is M(·) a martin-
gale? If so, with respect to which filtration? Justify your answer. You
may assume the memoryless property of Poisson processes; e.g.,

P (event in (t, t+ s]|history of process up to time t) = 1− e−λs

and that for any given t, N(t) has a Poisson distribution.

6. Suppose that Ft is a filtration, and thatX(·) is adapted to that filtration.
Show that for all s ≤ t, X(s) is Ft-measurable. Interpretation: the
complete history of X until t is known from the information at t.
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7. Suppose that A is a σ-algebra, and A1 and A2 are σ-algebra’s with
A1 ⊂ A2 ⊂ A. Suppose that X is a random variable that is measurable
with respect to A (you can think: just some kind of random variable).
Show that E [E [X|A2] |A1] = E [X|A1] (this is called the tower property
of conditional expectations).
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Appendix with Unit 10

This appendix briefly introduces conditional expectations and filtrations. For
more about conditional expectations, see Billingsley, Probability and Mea-
sure, Chapter 34. For more about filtrations, see Andersen et al.

1. Recall that a scalar random variable X on (Ω,F , P ) with values in R
is called measurable if {ω : X(ω) ≤ x} ∈ F for every x in R. Equiva-
lently, X−1((∞, x]) ∈ F for every x in R. Recall that we mentioned this
is equivalent to X−1(B) ∈ F for every Borel-set B (with Borel sets the
σ-algebra generated by the open sets in R).

2. A random variable on (Ω,F , P ) with values in a topological space (e.g.,
a metric space), is called measurable if X−1(B) ∈ F for every Borel-set
B (with Borel sets the σ-algebra generated by the open sets).

3. Suppose thatX is integrable and F -measurable, and G is a sub-σ-algebra
of F . Then there exists a random variable E[X|G] with:

(a) E[X|G] is G-measurable and integrable

(b)
∫
GE[X|G]dP =

∫
GXdP for every G ∈ G.

Such variable is called the conditional expecation of X with respect
to G. It is almost surely unique.

4. Example of conditional expectation: suppose that B1, B2, . . . is a
countable partition of Ω generating G, with P (Bi) > 0 for every i. Recall
that a partition covers the entire space, and its members are disjoint.
Then

E[X|G](ω) =
∫
Bi
XdP

P (Bi)

for ω ∈ Bi. Intuition: “E [X|Bi]”. Proof: G consists of sets of the form
∪some iBi. Thus, E[X|G]−1(x) has to be a union of Bi, for every x, so
that E[X|G] has to be constant on each Bi. By definition of conditional
expectation, ∫

Bi

E[X|G]dP =

∫
Bi

XdP.

The left hand side has to be equal to the value of E[X|G] on Bi times
P (Bi). That concludes the proof.
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5. Example of conditional expectation: If (X,Y ) is continuous, then
E[Y |σ(X)] =

∫
yfY |X(y)dy.

6. Theorem : for constants a and b, E[aX + bY |G] = aE[X|G] + bE[Y |G].
Proof: measurability follows since sums of measurable random variables
are measurable. So, we still have to check:∫

G

(aE[X|G] + bE[Y |G]) dP =

∫
G

(aX + bY ) dP.

But the left hand side equals∫
G

(aE[X|G] + bE[Y |G]) dP = a

∫
G

E[X|G]dP + b

∫
G

E[Y |G]dP

= a

∫
G

XdP + b

∫
G

Y dP,

because of the definition of conditional expectation given G. That con-
cludes the proof.

7. Theorem : If X is G-measurable and Y and XY are integrable, then
E[XY |G] = XE[Y |G]. Why does this make sense? Proof for simple
functions X =

∑n
i=1 ciIGi

(Gi ∈ G): first: for X = IG. To check:

E[1GY |G] = 1GE[Y |G],
or, for every G̃ ∈ G, ∫

G̃

1GE[Y |G]dP =

∫
G̃

1GY dP.

But the left hand side equals∫
G̃

1GE[Y |G]dP =

∫
G̃∩G

E[Y |G]dP

=

∫
G̃∩G

Y dP

=

∫
G̃

1GY dP.

Next, for X =
∑n

i=1 ciIGi
:

E[(
n∑

i=1

ciIGi
)Y | G] =

n∑
i=1

ciE[1Gi
Y |G]

=
n∑

i=1

ci1Gi
E[Y |G] = XE[Y |G],
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where in the first line we use the previous theorem and in the second
line we use the statement for 1Gi

. This concludes the proof for simple
X.

8. Note : conditioning on a σ-algebra generated by random variables is the
same as conditioning on the random variables generating the σ-algebra.

9. Note : E[Y |σ(X)] is a function of X.

10. A filtration is an increasing family of σ-algebra’s. The idea is that
information, and hence the information contained in the σ-algebra, in-
creases over time.

11. We say that a process X is adapted to a filtration Ft if X(t) is Ft-
measurable. The idea is that once the information on Ft is available,
the value of X(t) is known. Notice that since Ft is increasing in t,
this also means that the value of X(s) for s < t is known (or, X(s) is
Ft-measurable).
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