
BIO 244: Unit 12

Combining Martingales, Stochastic Integrals, and Applications to
Logrank Test & Cox’s Model

Because of Theorem 2.5.1 in Fleming and Harrington, see Unit 11: For count-
ing process martingales with continuous compensators, the compensator fully
determines the covariance function.

Example 12.1: Let N(t) = 1(U ≤ t, δ = 1) and A(t) =
∫ t

0 λ(u) Y (u)du.
Suppose that survival time T is continuous and that its hazard function λ(·)
is bounded. Then A(·) is continuous and E(M 2(t)) < ∞ for all t. It follows
that for s ≥ 0, cov(M(t),M(t + s))=var(M(t)) =

∫ t

0 λ(u) E(Y (u))du =∫ t

0 λ(u)P (U ≥ u)du.

In this unit we will discuss functions of martingales. It is easy to show that a
linear combination of martingales defined on the same filtration is also a mar-
tingale (see Exercises for Unit 11). What about products of martingales?

After considering this question, we will show that some stochastic integrals,
say Q(·) =

∫
H(s)dM(s), with respect to a counting process martingale M

are also martingales. These results will then be used to show that the nu-
merator of the logrank test and Cox’s score function can be represented as
martingales processes. We conclude with a theorem that shows how to find
the variance of Q(t) as a simple function of the integrand H(·) and M(·).

We begin with a theorem that will enable us to evaluate the covariance be-
tween 2 martingale processes.

Theorem 12.1: Suppose that M1(·) and M2(·) are martingales defined on
the same filtration, and that for every t, E(Mj(t)) = 0 and E(M 2

j (t)) < ∞, for
j=1,2. Then there exists a right-continuous predictable process < M1,M2 >

(·) such that

M(·) def
= M1(·)M2(·)− < M1,M2 > (·) is a zero-mean martingale.
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Proof: (adapted from F&H, Thm. 1.4.2). Note that M1(·) + M2(·) and
M1(·)−M2(·) are zero-mean martingales, so that (M1(·)+M2(·))2 and (M1(·)−
M2(·))2 are sub-martingales (via Jensen’s inequality, see Unit 11 page 11, or
directly). Thus, by the Doob-Meyer decomposition, there exist predictable,
right-continuous < M1 + M2,M1 + M2 > (·) and < M1 −M2,M1 −M2 > (·)
such that

M (M1+M2)(·) def
= (M1(·) + M2(·))2− < M1 + M2,M1 + M2 > (·) and (12.1)

M (M1−M2)(·) def
= (M1(·)−M2(·))2− < M1 −M2,M1 −M2 > (·) (12.2)

are martingales. We can choose these martingales to have zero mean. Now
define

< M1,M2 > (·) = <M1+M2,M1+M2>(·)−<M1−M2,M1−M2>(·)
4

and

M(·) = M1(·)M2(·)− < M1,M2 > (·).

Subtracting (12.2) from (12.1) and dividing by 4 yields

1

4

(
M (M1+M2)(·)−M (M1−M2)(·)

)
= . . . = M1(·)M2(·)− < M1,M2 > (·).

Since both of the terms on the left-hand side are zero-mean martingales de-
fined on the same filtration, so is M(·).
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Note: Note that this is not simply an application of the Doob-Meyer decom-
position, since M1(·)M2(·) is not in general a submartingale.

Note (compare with Exercise 6 Unit 10):

cov(M1(t),M2(t + s)) = E (< M1,M2 > (t)) .

Thus, knowing < M1,M2 > tells us about cov(M1(·),M2(·)).

Corollary 12.1: If < M1,M2 > (·) as
= 0, then M1(·)M2(·) is a martingale.

Definition: If < M1,M2 > (·) as
= 0, then M1(·) and M2(·) are called

orthogonal.

Note: This implies that orthogonal martingales are uncorrelated; i.e., be-
cause of the above, if E(< M1,M2 > (t)) = 0,

cov(M1(t),M2(t + s)) = E(< M1,M2 > (t)) = 0 .

In general, the process M1(·)M2(·) is not necessarily a martingale. It will
be when M1(·) and M2(·) are orthogonal. Thus, identifying martingales as
orthogonal is useful.
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The following theorem gives sufficient conditions for orthogonality.

Theorem 12.2: (F&H, Thm 2.5.2). Suppose that N1(·), N2(·), ..., Nk(·)
are counting processes defined on the same filtration, with continuous com-
pensators A1(·), A2(·), ..., Ak(·), respectively. Define Mi(·) = Ni(·) − Ai(·)
for i=1,2,...,n. Then if no 2 of the counting processes can jump at the same
time, < Mi,Mj > (·) a.s.

= 0 for i 6= j. That is, Mi(·) and Mj(·) are orthogonal.

An obvious application of this result would be the observed survival expe-
riences of k patients (if survival time is continuously distributed). Here our
usual assumption of independence of these outcomes would ensure that no 2
of the patients’ counting processes would jump at the same time.
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We now consider an important result for processes formed as stochastic inte-
grals with respect to counting process martingales.

Theorem 12.3 Let N(·) be a counting process with continuous compen-

sator A(·), such that M(·) def
= N(·)−A(·) is a zero-mean martingale. Then if

H(·) is any bounded, predictable process defined on the same filtration, the
process Q(·) defined at time t by

Q(t)
def
=

∫ t

0
H(s)dM(s)

is also a zero mean martingale.

Proof: See F & H, §1.5 for a proof. We do not include it here as it is
somewhat complicated. However, one can get an intuitive feel for why the
result is true by considering increasingly more difficult integrands H(·). For
example, when H(·) is a constant in t (possibly stochastic), then it is clear
that Q(·) is a martingale. Suppose next that H(·) is a step function with
jumps at times t1 < t2 < · · ·. Then one can express the stochastic integral as
a linear combination of increments, M(tj+1)−M(tj), of the martingale M(·),
in which case one would expect the result to also be a martingale. Or, with
some hand-waving, for u < t:

E

[∫ t

0
H(s)dM(s)|Fu

]
≈ Q(u) +

∑
u<s≤t

E [H(s)dM(s)|Fu]

= Q(u) +
∑

u<s≤t

E [E [H(s)dM(s)|Fs−] |Fu]

= Q(u) +
∑

u<s≤t

E [H(s)E [dM(s)|Fs−] |Fu] = 0,

since “H(s) is Fs−-measurable” and where we have used the tower property
of conditional expectations (see exercises).

To illustrate the value of this result, we give two examples.
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Example 12.2 (Logrank Statistic): Assume the usual 2-sample setting,
where

(Ui, δi, Zi), i = 1, 2, . . . n

Zi =

{
0 if subject i is in group 0
1 if subject i is in group 1.

Recall that the logrank test statistic is of the form

0− E√
V

=
U√
V

.

Consider U and define

Yij(u) = 1(Ui ≥ u, Zi = j)

and

Nij(u) = 1(Ui ≤ u, δi = 1, Zi = j) for j = 0, 1 .

We earlier showed that (see page 3 of Unit 10)

U =

∫ ∞

0

Y0(s)

Y0(s) + Y1(s)
dN1(s)−

∫ ∞

0

Y1(s)

Y0(s) + Y1(s)
dN0(s),

where for j=0,1

Yj(s) =
n∑

i=1

Yij(s) and Nj(s) =
n∑

i=1

Nij(s).

Note that if

Aij(t)
def
=

∫ t

0
λj(u)Yij(u)du j = 0, 1,
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then

Nij(t)− Aij(t)

is a martingale and

dAij(u) = λj(u)Yij(u) du.

Thus we can write

U =
n∑

i=1

∫
Y0(s)

Y0(s) + Y1(s)
dNi1(s)−

n∑

i=1

∫
Y1(s)

Y0(s) + Y1(s)
dNi0(s)

=
n∑

i=1

∫
Y0(s)

Y0(s) + Y1(s)
(dMi1(s) + dAi1(s))

−
n∑

i=1

∫
Y1(s)

Y0(s) + Y1(s)
(dMi0(s) + dAi0(s)) ,

where all integrals run from 0 to ∞. Under H0 : λ0(·) ≡ λ1(·), and it is easy
to show that

n∑

i=1

∫
Y0(s)

Y0(s) + Y1(s)
dAi1(s)−

n∑

i=1

∫
Y1(s)

Y0(s) + Y1(s)
dAi0(s)

a.s.
= 0. (12.3)

Thus under H0,

U =
n∑

i=1

∫ ∞

0

(
Y0(s)

Y0(s) + Y1(s)

)
dMi1(s)−

n∑
i=1

∫ ∞

0

(
Y1(s)

Y0(s) + Y1(s)

)
dMi0(s).

Let U(t) denote this expression when the integrals run from 0 to t (so that
U(∞)=U), and consider the stochastic process U(·). Under H0,

U(t) =
n∑

i=1

∫ t

0

(
Y0(s)

Y0(s) + Y1(s)

)
dMi1(s)−

n∑
i=1

∫ t

0

(
Y1(s)

Y0(s) + Y1(s)

)
dMi0(s).
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Since Y0(·)
Y0(·)+Y1(·) and Y1(·)

Y0(·)+Y1(·) are bounded and predictable (since left contin-

uous), each integral is a martingale (Theorem 12.3). Hence, also the sum
of these integrals is a martingale, and so U(t) is a martingale. Thus, under
the null, the numerator of the logrank statistic can be viewed as the value
of the martingale process U(t) at t = ∞. Looking ahead, we will show that
the limit of this process (properly standardized) is Gaussian, and thus will
be able to conclude that U(∞) has an asymptotic normal distribution, under
the null.
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Example 12.3 (PL score function from Cox’s PH Model):

For simplicity (but without loss of generality) assume Z is a bounded scalar
covariate. As before, the observations consist of

(Ui, δi, Zi) i = 1, 2, . . . , n.

We assume the usual PH model in which h(t | Z) = λ0(t)e
βZ , and that the

data are continuous so that there are no ties. Then the partial likelihood
score function (using the same notation as when we introduced Cox’s model)
is given by U=U(β), where (see Unit 7)

U =
∑
τj

(
Z(j) − Zj(β)

)
,

with

Zj(β) =

∑

`∈Rj

Z` eβZ`

∑

`∈Rj

eβZ`

.

This can also be expressed as (Exercise 7)

U = . . . =
n∑

i=1

∫ ∞

0




Zi −

n∑

`=1

Z`Y`(s)e
βZ`

n∑

`=1

Y`(s)e
βZ`




dNi(s),

where Yi(s) = 1(Ui ≥ s) and Ni(s) = 1(Ui ≤ s, δi = 1).
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Letting

Ai(s)
def
=

∫ s

0

(
λ0(u)eβZi

)
Yi(u)du,

it follows that Mi(s)
def
= Ni(s)− Ai(s) is a zero-mean martingale and that

U(t)
def
=

n∑
i=1

∫ t

0




Zi −

n∑

`=1

Z`Y`(s)e
βZ`

n∑

`=1

Y`(s)e
βZ`




dNi(s)

equals (Exercise 3)

U(t) =
n∑

i=1

∫ t

0




Zi −

n∑

`=1

Z`Y`(s)e
βZ`

n∑

`=1

Y`(s)e
βZ`




dMi(s). (12.4)

Since the bracketed term is bounded (Exercise 8) and predictable (since left
continuous), U(t) is a martingale (Theorem 12.3). Thus, the score function
from Cox’s partial likelihood can be viewed as the value (when t=∞) of a
martingale process.
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The final result in this unit is a valuable theorem which tells us how to find
the variance of a martingale formed as a stochastic integral with respect to a
counting process martingale. A quick examination of the preceeding exam-
ples shows how it could be used to find the variance of the logrank statistic
and Cox’s partial likelihood score function.

Suppose that N(·) is a counting process and A(·) is its continuous compen-

sator, so that M(·) def
= N(·)−A(·) is a zero-mean martingale. Then assuming

E M 2(t) < ∞, we earlier showed that

Var (M(t)) = E
(
M 2(t)

)
= E (< M, M > (t))

= E (A(t)) .

This result was seen to be useful for getting the variance of counting process
martingales.
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Now consider the variance of the martingale

Q(t) =

∫ t

0
H(s)dM(s)

where M(·) = N(·)− A(·) and H(·) is a bounded and predictable process.

Theorem 12.4: (see F&H, Thm. 2.4.2). Assuming that E(M 2(s)) < ∞
for all s, and N is bounded, then for all t:

< Q, Q > (t)
a.s.
=

∫ t

0
H2(s)dA(s).

The proof is sketched in the Appendix. See F&H for a full proof. Under the
conditions of this theorem, we can find the variance of Q. That is,

Var (Q(t)) = E
(
Q2(t)

)

= E (< Q, Q > (t)) = E
(∫ t

0 H2(s)dA(s)
)

.

Thus, we can obtain the variance of

Q(t) =

∫ t

0
H(s)dM(s)

from knowledge of H(·) and A(·).

Note: Since the logrank numerator and Cox’s score function can be expressed
as sums of this type of stochastic integral, we can use this result to find their
variances.
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Exercises

1. Prove Corollary 12.1.

2. Verify equation (12.3).

3. Verify equation (12.4).

4. Prove that Q(t) as defined above Theorem 12.4 has mean 0.

5. Assume that survival time is continuous and consider the 1-sample prob-
lem, where (Ui, δi), i=1,2,...,n are the observations. Define Ni(t) =
1(Ui ≤ t, δi = 1) and Yi(t) = 1(Ui ≥ t) for t ≥ 0 and i=1,2,...,n.

(a) Re-express the following Lebesgue-Stieltjes integral using the ’old’
notation; that is, in terms of the numbers of persons who fail, are cen-
sored, or are at risk at various times.

∑n
i=1

∫ t

0
Yi(s)

1+Yi(s)
dNi(s).

(b) Suppose that λ(t) denotes the hazard function for the underlying
survival times. What is the variance of

∑n
i=1

∫ t

0
Yi(s)

1+Yi(s)
dMi(s),

where Ai(·) is the compensator process for Ni(·) and Mi(·) = Ni(·) −
Ai(·)? Express your answer in terms of λ(·) and the distribution function
of the Ui.

6. Show that EM 2(t) < ∞ in Example 12.1.

7. Verify equation U = ... = ... on page 9.

8. Show that the bracketed term in (12.4) is bounded.
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9. Using the definition of conditional expectation, prove that if Ft ⊂ Fs,
then E[X|Ft] = E[E[X|Fs]|Ft].
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Appendix: Heuristic Proof that < Q,Q > (t) =
∫ t

0 H2(s)dA(s)

We need to show that the unique compensator for Q2(t) is
∫ t

0 H2(s)dA(s);

i.e., that Q2(t) − ∫ t

0 H2(s)dA(s) is a martingale. The key thing to prove is
thus that

E[Q2(t + s)− ∫ t+s

0 H2(u)dA(u) | Ft] = Q2(t)− ∫ t

0 H2(u)dA(u) ,
or

E[Q2(t + s)− ∫ t+s

t H2(u)dA(u) | Ft] = Q2(t) ,
or

E[Q2(t + s) | Ft]− E
[∫ t+s

t H2(u)dA(u)
∣∣∣Ft

]
= Q2(t) ,

or that
E[Q2(t+s)−Q2(t) | Ft] = E

[∫ t+s

t H2(u)dA(u)
∣∣∣Ft

]
. (A.1)

We show this heuristically by first taking s = dt and showing that

E[Q2(t + dt)−Q2(t) | Ft] = E[
∫ t+dt

t H2(u)dA(u)|Ft],

or that, since A and H are predictable,

E[dQ2(t) | Ft] = E

[
d

∫ t

0
H2(u)dA(u) | Ft

]
= H2(t)dA(t). (A.2)

By writing

dQ2(t) = Q(t + dt)2 −Q2(t)

= (Q(t) + dQ(t))2 −Q2(t)

= 2Q(t)dQ(t) + (dQ(t))2,

it follows that, since Q(t) is Ft-measurable and Q is a martingale,

E
[
dQ2(t) | Ft

]
= 2E[dQ(t) Q(t)|Ft] + E

[
(dQ(t))2 | Ft

]

= 2Q(t)E[dQ(t)|Ft] + E
[
(dQ(t))2 | Ft

]

= 0 + E
[
(dQ(t))2 | Ft

]
.

Thus, we need to show that
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E
[
(dQ(t))2 | Ft

]
= H2(t)dA(t).

But

(dQ(t))2 = (H(t)dM(t))2 = H2(t) (dM(t))2 .

Thus,
E

[
(dQ(t))2 | Ft

]
= E

[
H2(t)(dM(t))2 | Ft

]

= H2(t) E
[
(dM(t))2 | Ft

]

= H2(t) E [dA(t) | Ft]

= H2(t)dA(t).

So much for taking s = dt. The heuristic proof is concluded by noticing that,
with I(t) =

∫ t

0 H2(s)dA(s) and if u > 0,

E
[
Q2(t + u)− I(t + u)|Ft

]

= Q2(t)− I(t) +
∑

t<s≤t+u

E
[
dQ2(s)− dI(s)|Ft

]

= Q2(t)− I(t) +
∑

t<s≤t+u

E
[
E

[
dQ2(s)− dI(s)|Fs

] |Ft

]

= Q2(t)− I(t) + 0,

where for the second equality we used the tower property of conditional ex-
pectations (see Exercises).

16


