
BIO 244: Unit 13

Martingale Central Limit Theorem and Related Results

In this unit we discuss a version of the martingale central limit theorem, which
states that under certain conditions, a sum of orthogonal martingales con-
verges weakly to a zero-mean Gaussian process with independent increments.
In subsequent units we will use this key result to find the asymptotic behavior
of estimators and tests under a variety of conditions. Many of the results we
present hold under more general conditions, and most are presented without
proof. See the texts by Fleming & Harrington and by Andersen, Borgan, Gill
& Keiding for details. We begin with some preliminary results.

In what follows, suppose that:

N(·) is a counting process.

A(·) is the compensator for N(·) (assume A(·) is continuous).

M(·) def
= N(·)− A(·) is a zero-mean martingale.

Recall from Unit 12 that

• If H(·) is a bounded and predictable process, defined on the same filtra-
tion as M(·), then the process Q(·) defined at time t by

Q(t)
def
=

∫ t

0 H(s)dM(s)

is a zero-mean martingale.
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• If in addition E(M2(t)) < ∞, then

< Q,Q > (t)
a.s.
=

∫ t

0

H2(s)dA(s),

and thus

V ar(Q(t)) = E(Q2(t)) = E(< Q,Q > (t)) = E(

∫ t

0

H2(s)dA(s)).

Recall that some of the commonly-used statistics for analyzing survival
data can be expressed as functions of stochastic integrals with respect
to counting process martingales. The above result helps to determine
the variance of these statistics.

• If the counting processes N1(·), N2(·), · · · are defined on the same filtra-
tion, have continuous compensators, and no 2 jump at the same time,
then the corresponding martingales M1(·), M2(·), · · · are orthogonal.
That is, < Mi,Mj > (·) a.s.

= 0 for i ̸= j.
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In preceding units we have ignored the so-called “usual conditions” (“les
conditions habituelles”) for filtrations. These are completeness and right
continuity. First, completeness. Completeness of a filtration Ft means that
F0 contains all null sets (a null set is a set A such that there exists a set B
with A ⊂ B, B ∈ F , and P (B) = 0). The collection of null sets is usually
denoted by N . Next, right continuity. Right continuity of a filtation means
that Ft = ∩ϵ>0Ft+ϵ. Intuitively that means that you can look a little bit into
the information in the future, but only for an infinitesimal amount of time.

The usual conditions for filtrations are sometimes necessary for theorems to
hold. For example, right-continuity is needed for the Doob-Meyer decompo-
sition. Some books (e.g. Andersen et al.) implicitly always assume that the
usual conditions hold. Also, right continuity of a filtration can be a powerful
tool to prove that something is a stopping time. As we will see later in this
unit, this has implications for so-called localizing sequences. Consider events
of the form τ = inft{| (X(t) |> k}. We sometimes want such events to
be stopping times. To prove this for particular processes, we will use right-
continuity of the filtration.

An example of a right-continuous filtration is a filtration generated by a
right-continuous jump process K (De Sam Lazaro, 1974, Lemma 3.3). K is
a right-continuous jump process if for all t, ω, K(s, ω) is constant in some
time interval s ∈ [t, t+ ϵ) for some ϵ > 0 (ϵ possibly depending on t, ω).

If a filtration does not include all null sets, one can go over to the smallest
filtration that includes both the original filtration and all null sets. This
is called “completion” of the filtration. Completion of a filtration preserves
right-continuity.

If for some filtration Ft the usual conditions do not hold, one can go over
to the so-called augmented filtration Fa

t , which is the smallest filtration con-
taining Ft for which the usual conditions do hold. One can show that such
filtration exists, and that (Rogers and Williams, 1994, Lemma 67.4)

Fa
t = ∩s>tσ (Fs,N ) = σ (∩s>tFs,N ) .

If M is a martingale with respect to some filtration Ft, then it is also a mar-
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tingale with respect to Fa
t (Lemma 67.10 from Rogers and Williams, 1994).

In many cases this makes it possible to ignore these “usual conditions.”
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Suppose that < Mi,Mj > (·) and < Qi, Qj > (·) denote the compensators
for Mi(·)Mj(·) and Qi(·)Qj(·). A useful result is the following (see F & H,
Thm 2.4.2):

Theorem 13.1: Suppose that N1(·), N2(·), . . . are bounded counting pro-
cesses (Ni bounded by Ki), M1(·),M2(·), · · · are the corresponding zero-mean
counting process martingales, each Mi satisfies EM 2

i (t) < ∞ for any t, and
that H1(·), H2(·), · · · are bounded and predictable processes. Suppose also
that the filtration concerned is right-continuous. Let

Qi(t)
def
=

∫ t

0

Hi(u)dMi(u) i = 1, 2, · · · .

Then < Qi, Qj > (t)
a.s.
=

∫ t

0 Hi(s)Hj(s)d < Mi,Mj > (s).

Note: Since the logrank numerator and Cox’s score function can be ex-
pressed as sums of this type of stochastic integral, we can use this result to
find their variances. See exercises.

Corollary 13.1: IfM1(·),M2(·), · · · are orthogonal, then so areQ1(·), Q2(·), · · · .

To see the value of this, let M1(·),M2(·), . . . be orthogonal, square integrable
counting process martingales arising from bounded counting processes. De-
fine

ΣQ(t)
def
=

n∑
i=1

Qi(t). (13.1)

Then

V ar(ΣQ(t)) = E
(
(ΣQ(t))2

)
= E(Q1(t) + · · ·+Qn(t))

2 = E
( n∑
i,j=1

Qi(t)Qj(t)
)

= E
( n∑
i,j=1

< Qi, Qj > (t)
)
= E

( n∑
i=1

Qi(t)
2
)
.
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Thus, the variance function of ΣQ(·) is given by

V ar(ΣQ(t)) =
n∑

i=1

E

(∫ t

0

H2
i (s) dAi(s)

)
. (13.2)

This is useful for finding the variance of statistics of the form in (13.1). Note
that the theorem is silent about the correlation between H1(·), · · · , Hn(·).
As we shall see, these processes are correlated in some applications of this
theorem.

We next consider ‘local’ properties, which allow us to relax conditions needed
for the Martingale central limit theorem. For details, see F & H, Ch. 2, or
A,B,G & K.

A deterministic function f(t), 0 ≤ t < ∞, is said to have a property locally if
the property holds on [0, s] for every s. For example, f(·) is “locally bounded”
if, for every s, there is a constant cs such that

sup
0≤u≤s

| f(u) |≤ cs .

Note: Being locally bounded is a weaker condition than being bounded. For
example, the function f(t) = t is locally bounded but not bounded. The idea
of “locally” can also be defined by the existence of a sequence of constants,
say t1, t2, · · · , satisfying ts → ∞ as s → ∞, such that the condition holds on
[0, ts] for every s. For example, f(·) is locally bounded if there exists t1, t2, · · ·
and c1, c2, · · · such that ts → ∞ and sup0≤u≤ts | f(u) |≤ cs , s = 1, 2, · · · .

The same ideas apply to stochastic processes, with the only change being
that the sequence of times consists of random variables defined on the same
filtration as the process.

Definition: An increasing sequence of random variables τ1, τ2, . . . is a
localizing sequence with respect to a filtration (Ft : t ≥ 0) if for each n,
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{τn ≤ t} ∈ Ft for all t ≥ 0, and if limn→∞τn = ∞ a.s.

Any particular τn is called a “stopping time”.

Definition A process X(·) is locally bounded if there exists a localizing se-
quence (τn) and constants (cn) such that for each n,

sup
0≤t≤τn

| X(t) |
a.s.
≤ cn.

Lemma 13.1 Any adapted cadlag process (right-continuous with left-hand
limits)X(·) adapted to a right-continuous filtration, satisfyingX(0) is bounded
by say K1 and having jump sizes bounded by say K2 is locally bounded.

Proof: this can be seen by taking

τn = sup {t : |X(s)| ≤ n : 0 ≤ s ≤ t} ∧ n ∨ 0.

Then for t ≥ n, {τn ≤ t} = Ω ∈ Ft, and for t < n,

{τn < t} = ∪s<t,s∈Q {|X(s)| > n} ∈ Ft.

Hence for every δ > 0,

{τn ≤ t} = ∩ϵ∈Q,ϵ∈(0,δ] {τn < t+ ϵ} ∈ Ft+δ,

since each of the events in the intersection is in Ft+ϵ ⊂ Ft+δ. Hence, by right
continuity of the filtration, {τn ≤ t} ∈ Ft. Check for yourself that τn → ∞
a.s., and that X (t ∧ τn) is bounded:

|X (t ∧ τn) | ≤ K1 ∨ (n+K2).

Corollary 13.2: Any counting process martingaleM(·) on a right-continuous
filtration and satisfying M(0)

a.s.
= 0 is locally bounded if the compensator of

the counting process is continuous.

Definition: For any stochastic process X(·) and localizing sequence (τn), the
stopped process Xn(·) is defined by Xn(t) = X(t∧τn). That is, Xn(t) = X(t)
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for t ≤ τn and equal to X(τn) for t > τn.

For example, another way to define a “locally bounded“ stochastic process
X(·) is by requiring that there exists a stopped process Xn(·) that is bounded
for each n.

It turns out that stopping a martingale preserves the martingale property
(Optional Stopping Theorem, Theorem 2.2.2 in Fleming and Harrington).
Hence, if a martingale M is locally bounded, there exists a localizing se-
quence τn such that the stopped process is a bounded martingale for each n.

Next, recall Wiener Processes (or Brownian Motion)

Definition: If W (·) is a Gaussian process satisfying W (0) = 0, E(W (t)) = 0
for all t, and Cov(W (s),W (t)) = min(s, t) for all t,s, then W (·) is a Wiener
process.

Theorem 13.2: Suppose W (·) is a Wiener process and f(·) is any (deter-
ministic) nonnegative function which is bounded on every bounded interval
(locally bounded). Then

(1) W (·) is a zero-mean martingale.

(2) The predictable quadratic variation process for W (·) satisfies

< W,W > (t) = t.

(3) Q(t)
def
=

∫ t

0 f(s)dW (s) is a zero-mean Gaussian process with Q(0)=0,
independent increments, and variance function

var (Q(t)) =

∫ t

0

f 2(s)ds.

Proof: (1) is Exercise 4b of Unit 11. To prove (2), we need to show that,
for every t ≥ 0 and s ≥ 0

E[W 2(t+ s)− (t+ s) | Ft]
a.s.
= W 2(t)− t,
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or that

E[W 2(t+ s) | Ft]
a.s.
= W 2(t) + s.

Note that we can write

E[W 2(t+ s) | Ft] = E[(W (t+ s)−W (t))2 −W 2(t) + 2W (t+ s)W (t) | Ft]

= E[(W (t+ s)−W (t))2 | Ft]−W 2(t) + 2E[W (t+ s)W (t) | Ft]

= E[(W (t+ s)−W (t))2 | Ft]−W 2(t) + 2W (t)E[W (t+ s) | Ft]

= E[(W (t+ s)−W (t))2 | Ft] +W 2(t),

where we have used the martingale property E[W (t+ s) | Ft] = W (t). Thus,
the result follows from the fact that E[(W (t + s) −W (t))2|Ft] = E[(W (t +
s) − W (t))2] = var(W (t + s)) + var(W (t)) − 2cov(W (t + s),W (t)) = (t +
s) + t − 2t = s. The first equality here can be seen as follows. If X is
independent of (Y1, Y2, . . . , Yk), then E [X|Y1, . . . , Yk] = EX. Intuitively, this
is clear: knowledge of (Y1, Y2, . . . , Yk) does not predict the expectation of
X. The proof for infinitely many Y ’s can be done using Theorem 34.1 from
Billingsley, Probability and Measure, 1986, after a careful choice of π-system,
following the same lines as Exercise 4b of Unit 11. See Exercises.

(3) follows from a more general result that, subject to some conditions, inte-
grals of bounded and predictable functions with respect to local martingales
are themselves local martingales. See F&H, Lemma 2.4.1 for details. Note
that the martingale does not need to be a counting process martingale.
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Finally, for any ϵ > 0 and stochastic integral U(·) of the form

U(t) =

∫ t

0

H(s)dM(s),

where M(·) is a counting process martingale with continuous compensator,
define the process Uϵ(·) by

Uϵ(t) =

∫ t

0

H(s)1[| H(s) |≥ ϵ]dM(s).

Note that a jump in the process U(·), say at time s, has magnitude H(s).
Hence, Uϵ(·) contains only those jumps in U(·) that are larger than ϵ.
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We now are ready to state a version of the Martingale Central Limit The-
orem. Suppose the filtration concerned is right-continuous. For any n and
i = 1, 2, · · · , n, suppose

• Nin(·) is a counting process with continuous compensatorAin(·) (13.3)

• Hin is locally bounded and predictable, and (13.4)

• No two of the counting processes can jump at the same time, so that the
n martingalesMin(·) = Nin(·)−Ain(·) are orthogonal. (13.5)

Define

• Uin(t)
def
=

∫ t

0 Hin(s)dMin(s)

• ΣUn(t)
def
=

∑n
i=1 Uin(t)

• Uin,ϵ(t)
def
=

∫ t

0 Hin(s)1[|Hin(s)| ≥ ϵ]dMin(s) , and

• ΣUn,ϵ(t)
def
=

∑n
i=1 Uin,ϵ(t).

Martingale Central Limit Theorem. Assume (13.3)-(13.5), and that for
every t,

(a) < ΣUn,ΣUn > (t)
p→ α(t) (some deterministic function)

and

(b) < ΣUn,ϵ,ΣUn,ϵ > (t)
p→ 0 ∀ϵ > 0

as n → ∞, then as n → ∞

ΣUn(·)
w→ U(·),

where U(·) is a zero-mean Gaussian process with independent increments and
variance function α(·).
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Note:

• The proof of this theorem can be found in Fleming and Harrington
Chapter 5.

• Condition (b) ensures that as n gets large, there cannot be too many big
jumps in ΣUn(·) (since if there were, this process might not converge to
zero). Thus, (b) can be viewed as a “tightness” condition.

• We can write U(·) as U(·) def
=

∫ ·
0 f(s)dW (s), where W (·) is a Wiener

process, and where f(·) is such that
∫ t

0 f
2(s)ds = α(t) (Theorem 13.2).

From this it follows that

var (U(t)) =

∫ t

0

f 2(s)ds = α(t).

• Strictly speaking, all condition (a) says is that < ΣUn,ΣUn > (t) con-
verges in probability to some determistic function; it doesn’t require that
this limit equals some specific value. In practice, this is usually proven
by actually finding the probability limit of < ΣUn,ΣUn > (t). This is
useful because the limiting function (denoted α(·)) also represents the
variance function of the limiting Gaussian process.

• Finding the limit in probability of < ΣUn,ΣUn > (t) is facilitated by
the fact that (compare with Theorem 13.1; local boundedness of Hin is
enough, see Fleming and Harrington Theorem 2.4.3)

< ΣUn,ΣUn > (t) =
n∑

i=1

∫ t

0

H2
in(s)dAin(s).

Similarly, finding the limit in probability of < ΣUn,ϵ,ΣUn,ϵ > (t) is facil-
itated by the fact that

< ΣUn,ϵ,ΣUn,ϵ > (t) =
n∑

i=1

∫ t

0

(
H2

in(s)
)
· 1 [Hin(s) ≥ ϵ] dAin(s).

• Note that the counting processes Nin(·) can be any counting processes,
not just the simple ’survival’ counting process that can jump at most
once.
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• In the definition of ΣUn(·), one might have expected to see the multi-
plier n−1/2, analogous to the ordinary CLT. As we will see later, this is
implicitly contained in the integrands Hin(·).
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Additional Details

The conditions for the Martingale CLT apply more generally than stated ear-
lier in this unit. As seen below, one way is by relaxing the condition on the
martingales Min(·) to be local martingales, as defined below.

• Definition: A process M(·) is a local martingale (or sub-martingale)
if there exists a localizing sequence (τn) such that the stopped process
Mn(·) is a martingale (sub-martingale) for every n.

Note 1: Consider the stopped process Mn(·). For any fixed t, Mn(t)
equals M(t) or M(τn), depending on whether the random variable τn is
> t or ≤ t, respectively. Similarly, Mn(t+ s) equals M(t+ s) or M(τn),
depending on whether the random variable τn is > t + s or ≤ t + s,
respectively. Thus, the change in Mn(·) between t and t + s equals
0, M(τn) − M(t), or M(t + s) − M(t), depending on whether τn < t,
t ≤ τn < t + s, or τn ≥ t + s, respectively. In all cases, this stopped
process will have uncorrelated increments.

Note 2: Any martingale is a local martingale.

Definition: A local martingale M(·) is called square integrable if
suptE(M(t)2) < ∞.

Theorem: Let N(·) be a counting process with continuous compensator
A(·) on a right-continuous filtration. If A(·) is locally bounded, then M(·) =
N(·)− A(·) is a local square integrable martingale.

The proof is easy. Because of Lemma 13.1, N is locally bounded. Hence
also the sum N − A is locally bounded (why?). But then it surely is locally
square integrable. It is a martingale because of the definition of compensator.
Because of the Optional Stopping Theorem on page 7, it hence is a locally
square integrable martingale.
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Extended Doob-Meyer Decomposition: If X(·) is a nonnegative local
submartingale on a right-continuous filtration, there exists a right-continuous,
nondecreasing, predictable process A(·) such that X(·)−A(·) is a local mar-
tingale. Further, if A(0) = 0 a.s., then A(·) is unique.

Theorem: Suppose that H(·) is a locally bounded and predictable process
andM(·) = N(·)−A(·) is a local counting process martingale with continuous
compensator and E(M(t)2) < ∞. Suppose the filtration is right-continuous.
Then:

Q(t) =

∫ t

0

H(s)dM(s) is a local square integrable martingale, and

(13.3)

< Q,Q > (t)
a.s.
=

∫ t

0

H2(s)dA(t) for all t.

For a proof, see F & H, Theorem 2.4.3. The statement can be found in
ABGK, Theorem II.3.1. The value of this Theorem is that we no longer re-
quire the integrand H(·) to be bounded, and we still get a nice result to help
in finding the variance function of Q(·).
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Exercises

1. Suppose N1(·) and N2(·) are counting processes that are defined on the
same filtration and that cannot jump at the same time. Let Ai(·) be
the compensator processes for Ni(·), and assume that Ai(·) is continu-
ous, i=1,2. Let Mi(·) = Ni(·) − Ai(·), i=1,2 and assume that H(·) is
a bounded and predictable process. Define Qi(t) =

∫ t

0 H(s)dMi(s), for
i=1,2.

(a) Define a counting process and prove that every counting process is
a submartingale.

(b) Is A1(·)−M 2
1 (·) a martingale? Justify your answer.

(c) Is Q1(·)Q2(·) a martingale? Justify your answer.

(d) Is Q1(·)Q1(·) a martingale? Justify your answer.

2. Complete the proof of Theorem 13.2, (2).

3. (15 points). We expressed the numerator of the logrank test and the
score of the Cox proportional hazards model as

n∑
i=1

∫ ∞

0

Hin(s)dMi(s),

with Hin predictable processes and Mi martingales. Next we want to
apply the martingale Central Limit Theorem to

n∑
i=1

∫ t

0

Hin(s)dMi(s).

Suppose we are interested in the limiting distribution of this process
at a fixed time t. Can we use the ordinary Central Limit Theorem for
random variables with values in Rk? Please explain.
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4. (30 points). Suppose Ti and Ci are survival- and censoring times, and
Zi the corresponding patient’s covariate (suppose a scalar covariate).
Suppose that we observe Ui = min(Ci, Ti), δi = 1Ti≤Ci

, and Zi (i =
1, . . . , n). Suppose that (Ti, Ci, Zi) (i = 1, . . . , n) are iid. Suppose that
the hazard of Ti follows the Cox proportional hazards model:

λi(t) = λ0(t)e
βZ .

As usual, define Ni(·) as the counting process which jumps when patient
i is observed to fail, and Mi the corresponding counting process martin-
gale. Define Yi(t) as the indicator for whether patient i is at risk at time
t.

(a) (5 points). Give an expression for Mi in terms of the hazard and the
observables.

(b) (5 points). Define

Hin(t) =
Yi(t)e

βZi√∑n
j=1 Yj(t)eβZj

.

Find a condition under which Hin is bounded for each n.

(c) (20 points). Consider

Xn(t) =
n∑

i=1

∫ t

0

Yi(s)e
βZi√∑n

j=1 Yj(s)eβZj

dMi(s).

Show thatXn(·) converges weakly. You may interchange convergence
in probability and taking integrals if needed (we will see in Unit 15
that that is valid here). Indicate all things you checked, even if they
look trivial. What is the limiting distribution of Xn(·)?
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