
BIO 244: Unit 2

Likelihood Construction, Inference for Parametric

Survival Distributions

In this section we obtain the likelihood function for noninformatively right-
censored survival data and indicate how to make an inference when a para-
metric form for the distribution of T is assumed. While the focus of this
course is on nonparametric and semiparametric inference, it is useful to con-
sider parametric inference for right-censored survival data for at least two
reasons: first, parametric inference can be very helpful in settings with small
sample sizes or when scientific insights can be gleaned from the shapes of sur-
vival curves; secondly, such inferences provide a useful contrast to inference
in more traditional settings, where the observations are direct realizations
from the underlying distribution of interest. When observations are subject
to censoring, then likelihood methods inform us about the distribution of the
observables, which depends on both the underlying survival process and the
process that leads to censored observations.

2.1 Observables, Likelihood Function:

For simplicity, consider the “1-sample” problem in which there are n i.i.d.

survival times, denoted T1, T2, . . . , Tn, with a common and unknown c.d.f.
F (·), about which we wish to make an inference.

Suppose that we don’t observe T1, · · · , Tn but instead observe (Ui, δi) for
i = 1, 2, . . . , n, where

Ui = min(Ti, Ci)

δi = 1(Ti ≤ Ci)

and Ci is the (fixed or random) “potential censoring time” for item i in the
sense that we will have a censored observation at time u if Ci = u and Ti > u.
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Let ⊥ denote ”is independent of”. We assume that Ti⊥Ci (noninformative
censoring) and that the n pairs (Ui, δi), for i = 1, · · · , n, are also i.i.d.

Likelihood Construction: Note that the bivariate random variable
(Ui, δi) consists of a continuous component Ui and a binary component δi.
(Ui, δi) can take two forms

(Ui, δi) = (ui, 1) : Ti is uncensored at time ui

(Ui, δi) = (ui, 0) : Ti is censored at time ui.

The likelihood contribution for (Ui, δi), say Li(F ), is proportional to the prob-
ability elements corresponding to these two types of outcomes.

CASE 1: Ci known constants

Li(F ) =

{
f(ui) if δi = 1

1− F (ui) if δi = 0

= f(ui)
δi[1− F (ui)]

1−δi

∴ L(F ) =
n∏

i=1

Li(F ) =
n∏

i=1

{
f(ui)

δi[1− F (ui)]
1−δi

}
. (2.1)

Note that (2.1) does not take the form of the usual likelihood function
that would result if we had observed T1, · · · , Tn; however, it functionally
depends only on F (·) and thus can be maximized to make inferences
about F (·).
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CASE 2: Ci i.i.d. ∼ G (G continuous with p.d.f. g)

Now suppose that the potential censoring times Ci are independent ran-
dom variables with distribution function G(·) and density function g(·).
The likelihood contributions for the 2 types of observations are:

Also Likelihood
Event Expressible As Contribution
Ui = ui, δi = 1 [Ti = ui, Ci ≥ ui] f(ui)[1−G(ui)]

Ui = ui, δi = 0 [Ti > ui, Ci = ui] [1− F (ui)]g(ui)

In fact, this is the density of the observables (Ui, δi) (Exercise 7).

Note how the independence of Ti and Ci, which ensures noninformative
censoring, is instrumental in the determination of the likelihood contri-
butions above. As we see below, the fact that the likelihood contribution
factors into one term involving F and another involving G greatly sim-
plifies the resulting inference.

∴ L(F,G) =
n∏

i=1

{
(f(ui)[1−G(ui)])

δi ([1− F (ui)]g(ui))
1−δi

}

=
n∏

i=1

{
f(ui)

δi[1− F (ui)]
1−δi

}
·

n∏
i=1

{
[1−G(ui)]

δig(ui)
1−δi

}
. (2.2)

Suppose that F and G are functionally independent; i.e.,

F = Fθ, G = Gϕ θ ∈ Θ, ϕ ∈ Φ and par. space is (θ, ϕ) ∈ Θ× Φ.

Then for purposes of inference about F , the terms in L involving G can
be regarded as a constant. That is, the maximizing value of F (·) for
this likelihood function is the same as from maximixing (2.1). As we
illustrate below, this is not to say that the properties of the resulting
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estimators of F (·) are the same. In this case, the score and information
for θ only depends on first factor, so the usual theory about MLEs can
be applied!
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2.2 Parametric Inference for the Exponential Distribution:
Let us examine the use of (2.1) for the case where we have (noninformatively)
right-censored observations from the exponential distribution. We begin with
the 1-sample problem and then discuss the comparison of two groups and the
analysis of covariates. We assume that the potential censoring times Ci are
i.i.d. random variables with c.d.f. G(·).

1-Sample Problem:
Suppose T1, T2, . . . , Tn are i.i.d. Exp(λ), and subject to noninformative right
censoring. Then (2.1) becomes

L = L(λ) =
n∏

i=1

{
(λe−λui)δi(e−λui)1−δi

}
= λre−λW , where r =

n∑
i=1

δi = # uncensored obs.

and W =
n∑

i=1

ui = total observed time.

Taking derivatives, we find

∂lnL
∂λ = r

λ −W

−∂2lnL
∂λ2 = r

λ2

 =⇒
λ̂ = r

W

Î(λ) = r
λ2

î(λ) = r
nλ2 ,

where we use Î(λ) and î(λ) to denote the observed (or sample) information for

the sample and an individual subject, respectively; e.g., Î(λ)
def
= − ∂2

∂λ2 lnL(λ).
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Note that r, the number of uncensored observations has the binomial distri-
bution; that is,

r ∼ binomial(n, p), where p = P (δi = 1)

=

∫ ∞

0

f(u)[1−G(u)]du.

Therefore,

I(λ)
def
= E[Î(λ)] =

np

λ2
i(λ)

def
= E [̂i(λ)] =

p

λ2
.

Notice that to estimate the observed information Î(λ) one does not need to
estimate G(·), but I(λ) does depend functionally on G(·).

Assuming the appropriate regularity conditions hold, as n → ∞,

√
n(λ̂− λ)√
i−1(λ)

=
(λ̂− λ)√
I−1(λ)

L−→ N(0, 1)

∴ or λ̂
apx∼ N(λ, I−1(λ)) = N(λ,

λ2

np
)

(see e.g. Andersen et al, Chapter VI, Section 1). Since λ is not known, we
can invoke Slutsky’s theorem and use the approximation, replacing λ2/(np)
with λ̂2/(np̂). That is,

λ̂
apx∼ N(λ, Î−1(λ̂)) = N(λ,

r

W 2
).

It turns out that a better approximation is to assume that the log of λ̂ is
normal. Using the delta method, this gives: lnλ̂

apx∼ N(lnλ, 1r).
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Suppose we wanted to use these results to test the hypothesis H0 : λ = λ0

that the true underlying λ equalled some specified value, say λ0, or to find
an approximate 95% confidence interval (CI) for λ.

Then under H0,

Z1
def
=

lnλ̂− lnλ0√
1
r

≈ N(0, 1)

→ Use Z1 to test H0.

CIs:

P

[
lnλ̂− 1.96

√
1

r
< lnλ < lnλ̂+ 1.96

√
1

r

]
≈ .95

=⇒ P
[
λ̂e−1.96

√
1
r < λ < λ̂e1.96

√
1
r

]
≈ .95 ,

and thus [λ̂e−1.96
√

1
r , λ̂e1.96

√
1
r ] is an approximate 95% CI for λ.

Example: STATA data set EX1.dta contains the survival results for 95
patients receiving AZT and 82 receiving ddI in a recent AIDS clinical trial.
The data are briefly described in file EX1.doc and will be discussed in the lab.

For the AZT group, r = 50 and W = 80.8 years, and thus λ̂ = .6188

approximate 95% CI for λ : (.4690, .8165)
(based on lnλ̂ ≈ Normal)

7



2-Sample Problem:
Suppose we wanted to compare the λ for 2 groups, say the patients receiving
ddI and those receiving AZT.

H0 : λA = λd

(λA = exponential par. for AZT group

λd = exponential par. for ddI group).

Assume noninformative censoring in each group (!). Then using the normal
approximations from the 1-sample problem, define

Z2
def
=

lnλ̂A − lnλ̂d√
1
rA

+ 1
rd

apx
≈ N(0, 1) under H0.

For the data in AZT-ddI.dta, Z2 = · · · = .218

(
p = .83
(2-sided)

)

; No significant difference between AZT and ddI groups.

Covariates:
Next suppose z is a p× 1 vector of covariates measured for each subject, and
we are interested in assessing whether the components of z are associated
with survival.

For the ith of n independent subjects, suppose that the value of z is denoted
zi. Thus, the observation for subject i is of the form (zi, Ui, δi).

−→ How might we analyze such data to make an inference about the
association of the components of z on the underlying survival times?

Assume: noninformative censoring: Ti independent of Ci given Zi.
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• ONE APPROACH: Continue to assume that each Ti is exponen-
tial, but let the parameter λ depend functionally on the corresponding
value of z. That is, assume Ti ∼ Exp(λi), where

λi = function(zi)

e.g. λi = λ0 · eβ
′zi.

That is, we assume our n independent underlying survival times T1, · · · , Tn

have different exponential distributions, but where the scale parameters
are linked through a known function of the covariates z1, · · · , zn. Then
L (equation 2.1) is a function of (λ0, β), and so we can employ standard
likelihood methods to make inferences about (λ0, β). For example, the
hypothesis that the first component of z is not associated with survival
is given by the zeroness of the first component of β. Once we have the
MLEs of the parameters (λ0, β), such tests can be made using standard
methods, such as Wald tests.

This approach of functionally relating a parameter of the survival dis-
tribution to the covariates was first considered by Feigl & Zelen (1965).

Note: In ordinary regression problems, we usually expressed observations
as

observed = expected︸ ︷︷ ︸
function of covariates

+ error.

However, it is not obvious how to extend such an approach to settings where
some observations are right censored. In contrast, with the Feigel–Zelen ap-
proach, we express λi as a function of the covariate value zi. Once this is
done, we take account of censoring by using the likelihood function (2.1).
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Other Parametric Families:
More generally, the same approach can be used to make parametric infer-
ences in the presence of (noninformatively) right censored observations for
other parametric families (e.g., Weibull, Gamma, . . .). One simply uses (2.1)
and proceeds in the same way as for the exponential distribution.

One concern with any parametric approach is whether the resulting inference
remains valid if the assumed underling parametric distribution does not fit
the data. One way to try to make the resulting inferences robust is to fit a
‘weakly structured’ parametric model to the data. To illustrate, consider the
1-sample problem where

T1, T2, . . . , Tn i.i.d. ∼ F (·),

where F (·) has the “piecewise exponential” distribution. That is,suppose that

0 = v0 < v1 < · · · < vk < vk+1 = ∞

is a known partition of [0,∞}, and we assume that the hazard function for
T is of the form

h(t) = λj for vj−1 ≤ t < vj.

Thus, the unknown parameters of F (·) are λ1, · · · , λk+1. The assumed hazard
is depicted below:

h(t)

v v v1 2 k

1
2 k+1...

...v3 vk-1

k

t
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Let Ij denote the interval [vj−1, vj), for j = 1, 2, . . . , k + 1.

Then for t ∈ Ij,

H(t) =

j−1∑
l=1

λl(vl − vl−1) + λj(t− vj−1)

F (t) = 1− e−H(t)

f(t) = h(t)e−H(t) = λje
−H(t)

L = L(λ1, λ2, . . . , λk+1) =
n∏

i=1

{
f(ui)

δi [1− F (ui)]
1−δi

}

= · · · =
k+1∏
j=1

λ
rj
j e

−λjWj ,

where rj =
n∑

i=1

δi · 1[ui ∈ Ij] = # uncensored times in Ij, and

Wj =
n∑

i=1

(ui − vj−1)1[ui ∈ Ij]︸ ︷︷ ︸
contributions for ui falling in Ij

+ (vj − vj−1)
n∑

i=1

1(ui > vj)︸ ︷︷ ︸
contributions for ui that exceed vj

= total time observed in the “window” Ij.

Given this likelihood function, we can proceed in the usual way to make
inferences. Specifically,

λ̂j = rj/Wj,

and

Î(λ1, λ2, . . . , λk+1) = diagonal

(
r1
λ2
1

,
r2
λ2
2

, . . . ,
rk+1

λ2
k+1

)

=⇒ (λ̂1, . . . , λ̂k+1) approximately uncorrelated.
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As before, we can approximate lnλ̂j

apx
≈ N

(
lnλj,

1
rj

)
.

Applying this to the AZT-ddI.dta (pooling the AZT & ddI groups) gives the
following:

k = 5, v1 = .25, v2 = .5, v3 = .75, v4 = 1, v5 = 1.5

Interval rj Wj λ̂j lnλ̂j V̂ar(lnλ̂j)

[0, .25) 19 42.0 .45 -.79 .05

[.25, .50) 21 35.8 .59 -.53 .05

[.50, .75) 28 26.35 1.06 .06 .04

[.75, 1.0) 14 17.86 .78 -.24 .07

[1.0, 1.5) 10 21.93 .46 -.79 .10

[1.5, ∞) 3 6.90 .43 -.83 .33

ln[h(t)]

Taken at face value, the plot suggests that perhaps the hazard function is
unimodal. However, the variances of the λ̂j are considerable and not equiva-
lent.
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One could use a weakly structured model such as this to assess whether a
specific parametric assumption (say, the Weibull distribution) is reasonable,
or as an estimator in its own right.

NOTE 1: In the preceding, it may be preferable to plot lnλ̂j (or equiv-
alently, λ̂j on a log scale) instead of λ̂j because the precision will vary less
with variations in the λj.

NOTE 2: The preceding assumes the intervals were pre-specified. An
alternative is to let the data determine the intervals so that there are equal
numbers of uncensored events (e.g., 5) per interval. The resulting estimates of
lnλ̂j will then have approximately equal precision. See Cox (1979) for details.

Another approach would be to allow both the λj and the vj to be random.
The special case where k = 1 and we partition the time axis into 2 intervals is
sometimes referred to as a “changepoint” problem: we have a process whose
distribution we postulate to “shift” at some unknown time point v1. The
unknowns in our setting are the hazards λ1 and λ2 and the time, v1 at which
the shift occurs. See, for example, Hinkley (1970) for an example of how
such problems arise and how traditional estimators can sometimes give poor
results.

Recall equation (2.2), the likelihood function L(F,G) when the potential cen-
soring times are assumed to be i.i.d. with c.d.f. G(·). In the development
following (2.2) we assumed that G(·) was from some parametric family, and
thus L(F,G) was actually a function over some finite dimensional space. Sup-
pose instead we wanted to leave G(·) unrestricted; conceptually, we still can
think about the maximizing value, say (F̂ , Ĝ), of (2.2), where the space over
which the maximum is taken involves both the parametric space for F (·) and
the unrestricted space for G(·).

What can we say about the solution (F̂ , Ĝ)? Given the factorization of (2.2)
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as a product of 2 terms, one involving F and one involving G, it follows that
F̂ can be obtained by simply maximizing (2.1). Another way to view this is
to consider the “profile likelihood function” for F , defined as

Lp(F )
def
= supGL(F,G) .

This is proportional to (2.1). A formal theory for inference in such a “semi-
parametric” setting exists (cf: Murphy & van der Vaart, 2000). We return
to this later in the course.
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Exercises

1. Verify omitted algebraic details for piecewise exponential likelihood.

2. Suppose T1, T2, · · · , Tn are i.i.d. W (λ, p) and data are noninformatively
right censored (i.e., we observe (Ui, δi) for i = 1, 2, . . . , n).

• Determine the (observed) score and information equations; note:
MLEs not expressible in closed form.

• How would you use these to test H0 : Ti ∼ Exp(λ) i = 1, 2, . . . , n?

3. For T1, T2, . . . , Tn i.i.d. piecewise exponential (with censoring), how
would you test H0 : λ1 = λ2 = · · · = λk+1?

4. Consider the 2 tests for lack of fit to an exponential model that are
suggested in (2) and (3). Briefly indicate the possible advantages and
disadvantages of each.

5. A multiplicative intensity model is one where the hazard function fac-
tors into a term involving time (but not covariates) and a term involving
the covariates (but not time). Suppose you wanted to fit a multiplica-
tive intensity model which assumes that the underlying hazard function
is piecewise constant over the time intervals determined by the known
times 0 < v1 < ... < vk < vk+1 = ∞. Let the p × 1 covariate vector be
denoted z = (z1, z2, ..., zp).

(a) Propose a specific multiplicative intensity model in terms of h(t | z),
the hazard function at time t for someone with covariate vector z.

(b) Suppose your data consists of noninformatively right-censored data
from n independent subjects, and that the observation for subject i is
given by (Ui, δi, zi), where Ui and δi are defined in the usual way (such
as in the preceding problem). Write down the likelihood function, and
describe briefly how you would estimate parameters in this model.

(c) Given your model, how do you express the hypothesis that the haz-
ard function for any individual is constant in t? Briefly (1-2 sentences)
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indicate how you might test this hypothesis.

6. Show formally that the likelihood on page 3 arises from the density of
the observables (Ui, δi).
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Additional Reading

For additional reading about parametric inferences, see Lawless (2003). Buck-
ley & James (1979) were the first to attempt to adapt ordinary regression
approaches (where the observations are expressed as a mean plus error term)
to right censored data.
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