
BIO 244: Unit 3

Stochastic Processes: Introduction

In traditional parametric inference, we are interested in propeties of estima-
tors, say θ̂, of a finite-dimensional parameter θ which, for example, describes
the c.d.f. F (·) of a survival time random variable T . We then focus on the
distribution of the finite-dimensional random vector θ̂.

Suppose instead we want to nonparametrically estimate F (·). Then the re-
sulting estimator, say F̂ (·), is no longer a finite-dimensional random vector
but instead a stochastic process. Thus, consideration of the properties of such
estimators involves properties of stochastic processes, and use of any large-
sample approximations (analogous to normal approximations for MLEs) in-
volves convergence properties of stochastic processes. This and the following
unit will give a brief introduction to stochastic processes. The goals are to
define a stochastic process, to illustrate how the probabilistic properties of a
stochastic process can be more complex than those of a random variable, to
define Gaussian processes, and to introduce the concept of convergence of a
sequence of stochastic processes.

Stochastic Process: A stochastic process X(·) is a family of random vari-
ables indexed by t in some set I; i.e., X(·) = (X(t) | t ∈ I).

In this course, t will denote time and the set I will usually be taken to be
[0,∞). Thus, X(·) = {X(t) | 0 ≤ t < ∞]. For example, if t denotes time
since beginning a clinical trial, X(t) might denote a AIDS patient’s CD4 cell
count at time t or his/her survival status at time t (where X(t)=0 denotes
being alive at t and X(t)=1 denotes having died on or before time t).
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Commonly, the value, X(t), of the process X(·) at time t is referred to as the
“state of the process” at time t. One way of describing a stochastic process
X(·) is by the qualitative nature of the set I or of the values of X(t). The
following categories are sometimes used:

Type of Process

X(t) = concentration of a drug in the
blood t time units after ad-
ministration

CT, CS

X(t) = air pollution level on day t DT, CS
X(t) = # asthma attacks that occur

by time t since beginning a
treatment

CT, DS

X(t) = indicator of a drug-resistant
mutation at codon site t

DT, DS

CT : continuous time
DT : discrete time
CS : continuous state
DS : discrete state

Our focus in this course will be on continuous time processes, usually with
discrete states (CT, DS).

Because X(·) is a family of random variables, descriptions of the properties
of a stochastic process tend to be more complicated than those of a scalar
random variable. To see this, recall that realizations of a scalar random
variable Y can be viewed as arising from a mapping from a space Ω to the
real line; i.e.,

Y : Ω → R.

For example, we view realizations (observations) from the random variable
Y as mappings of different points in Ω; e.g., we might have Y(ω1)=6.5 and
Y(ω2)=14.1, where ω1 and ω2 are two points in Ω.
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In contrast, a single realization (also known as ’sample path’) of a stochastic
process X(·) means the values of X(t;w) for all t (for a fixed value of ω). For
example, if we use X(·;ω) to denote the set {X(t;ω) | 0 ≤ t < ∞}, and if ω1

and ω2 are two points in Ω, the corresponding values of X(·, ω1) and X(·, ω2)
might look like the following:

t

X(·;ω1)

X(·;ω2)

For example, these might denote the systolic blood pressures of 2 patients
over a period of time following administration of a treatment.

In most respects, the definition of a stochastic process as a set of random
variables defined on an underlying probability space generalizes directly from
that used for random variables. That is, suppose that (Ω,A) is a probability
space with probability measure P . That is, Ω is a set, A is a σ-algebra of
subsets of Ω, and P is a probability measure defined on the elements of A.
For a review of this set-up see Appendix A.

Then we say that the stochastic process X(·) is defined on (Ω,A, P ) if the
scalar random variable X(t) is defined on (Ω,A, P ) for every t. That is, for
each t ∈ [0,∞),

(a) X(t) : Ω → R, where the value of X(t) for a particular ω is denoted
X(t;ω), and
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(b) X(t) is measurable: for any x ∈ R, the set E(x, t)
def
= {ω ∈ Ω :

X(t, ω) ≤ x} ∈ A.

Let’s consider the analogs of these properties for the entire stochastic process
X(·). The analog of (a) is the function

X(·;ω) def
= {X(t;ω) : 0 ≤ t < ∞} ,

a ”sample path” of the process X(·). Thus, when we are dealing with a ran-
dom variable X, we sometimes think of a set of n realizations as the values
Xi(ω) for i=1,2,...,n where ω ∈ Ω. In contrast, n realizations or sample paths
from the stochastic process X(·) are the values of the n functions Xi(·;ω),
for i=1,2,...,n.

Now consider (b); that is, that the scalar random variableX(t) isA-measurable.
It is tempting to conclude from (b) that any event expressible in terms ofX(·)
is A-measurable, which would be desirable because otherwise the probability
of such events would not be defined. However, this need not be the case.
For any two times, say t1 and t2, consider the random variables X(t1) and
X(t2). Then for any reals x1 and x2, the measurability of X(t1) and X(t2)
ensures that E(x1, t1) and E(x2, t2) are elements of A, and hence the event
E = E(x1, t1)∩E(x2, t2) is also an element of A. Similar arguments hold for
the k random variables formed by examining X(·) at k distinct time points,
or for that matter for a countably infinite number of random variables since
σ-algebras are closed under countably infinite intersections. However, since
X(·) contains an uncountably infinite number of random variables, complica-
tions can arise because events desribed in terms of values of the process may
not correspond to elements of the σ-algebra A, in which case the probability
of the event would not be defined. This is illustrated in the following example.

Example 3.1: Suppose that (Ω,A, P ) is the unit interval probability space
(see Appendix A), I = [0, 1], and S is some non-measurable subset of Ω =
[0, 1]. Define the stochastic process X(·) by X(t;ω) = 1 if ω ∈ S and ω = t,
and X(t;ω) = 0 otherwise. Then it can be verified that X(t) is A-measurable
for every t. However, consider the event
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E
def
= {ω : sup

t
X(t;ω) ≤ 0}.

Since P (X(t) = 0) = 1 for every t, we would want to consider E as an event
and to take its probability to be 1. However, E = Ω\S, which is not a
measurable set. Therefore, we cannot consider E as an event and take its
probability to be 1, because the probability measure P is only defined on
elements of A.

Some Definitions and Results

• X(·) = {X(t), tϵI} called continuous if P [A] = 1,

where A = {ω : X(·; ω) is a continuous function of tϵI }

Similar definitions for right continuous and left continuous.

−→ i.e., the stochastic process is said to have the property if the set
of its sample paths which have the property has probability 1.

We now consider 2 definitions of relationships between processes (taken
from Fleming & Harrington, 1991).

• X(·) and Y (·) are indistinguishable if P [B] = 1,

where B = {ωϵΩ : X(t;ω) = Y (t;ω) for all tϵI}

• X(·) is a modification of Y (·)
if, for every tϵI, P [X(t) = Y (t)] = 1

i.e., if for every t, P [Ct] = 1, where Ct = {ωϵΩ : X(t;ω) = Y (t;ω)}.

At first glance, one might think that the preceding 2 properties are equiv-
alent. However, this is not necessarily so, as the following example illustrates:
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Example 3.2: Let Ω = [0, 1], and for A ⊂ Ω, suppose that P(A) denotes
Lebesgue measure.

Let X(t;ω)
def
=

{
1 if t− [t] = ω
0 otherwise,

where [t] denotes the greatest integer less than or equal to t. For example, if
ω = 0.5, then X(t;ω)=1 when t = 0.5, 1.5, 2.5, . . . and X(t;ω) = 0 otherwise.

Also define Y (t;ω) = 0 for all t and ω.

(a) Are X(·) and Y (·) indistinguishable?
No, since B = {ω : X(· ;ω) = Y (· ;ω)} = the empty set, so that P(B)=0.

(b) Is X(·) a modification of Y (·)?
Yes, since for any specific t,

Ct = {ω : X(t;ω) = Y (t;ω)} = Ω \ {t− [t]}
(i.e., Ct denotes every ωϵΩ except the singleton ω = t− [t])
and hence P (Ct) = 1.

The 2 conditions are not equivalent in general. However, it can be shown that
ifX(·) and Y (·) are each left (or right) continuous, then, X(·) is indistinguish-
able from Y (·) if and only ifX(·) is a modification of Y (·) (3.1)

Note: It’s hard to envision any real processes for which ‘indistinguishability’
and ‘modification of’ are not equivalent. However, we give this example to
illustrate how things can be more difficult when dealing with a stochastic
process than with a random variable. For our applications in this course,
(3.1) will always hold, and so we don’t need to make a distinction between
indistinguishability and a modification.

• If X(·) is a modification of Y (·), then for any k > 0 and t1, t2, . . . , tk ∈ I,
the k-dimensional random vector (X(t1), . . . , X(tk)) has the same dis-
tribution as (Y (t1), . . . , Y (tk)).
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Let us next consider how to describe the probabilistic aspects of a stochas-
tic process X(·). This is commonly done by describing all of its finite-
dimensional distributions; i.e., the distribution of (X(t1), X(t2), . . . , X(tk))
for every k and every (t1, t2, . . . , tk), where 0 ≤ t1 < t2 < · · · < tk.

Like with random variables, the concept of moments carries over to stochastic
processes. In particular, the mean function µ(·) and covariance function
C(·, ·) of the stochastic process X(·) are defined by

µ(t)
def
= E(X(t)) t ≥ 0

and

C(s, t) = Cov(X(s), X(t)) s, t ≥ 0.

Gaussian Process: X(·) is a Gaussian process if, for every k and t1, . . . , tk,

(X(t1), X(t2), . . . , X(tk))

has a multivariate normal distribution. Analogous to the normal distribution
for a random variable, the probabilistic properties of a Gaussian process can
be characterized by its mean function µ(·) and covariance function C(·, ·).

Within the class of Gaussian distributions, there are several important spe-
cial cases. In all the Gaussian processes that we consider in this course, we
assume that all sample paths are continuous.

Wiener Process: The Gaussian process X(·) is a Wiener Process (also
known as Brownian Motion) if

µ(t) = 0 ∀tϵ[0,∞)
X(0) = 0,

and C(s, t) = min(s, t).

Note that Var(X(t)) = C(t, t) = t.
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Example 3.3: (Approximation of Wiener Process/Brownian Motion by a
discrete time Random Walk).

Suppose that Z1, Z2, . . . are i.i.d. N(0,1) random variables. For any t and
ϵ > 0, define M = [t/ϵ], where [u] denotes the greatest integer less than
or equal to u. Let X(0) = 0 and for t=1,2, ..., define the continuous-time
process:

X(t) =
√
ϵ(Z1 + Z2 + . . .+ ZM) for t > 0.

That is, X(t) consists of the sum ofM i.i.d.N(0, ϵ) random variables. Its sam-
ple paths are step functions, yet it approximates a continuous-time Wiener
process. Then

µ(t) = E(X(t)) = 0

and for t ≤ s (and hence also for t > s),

C(s, t) = Cov(X(s), X(t)) = ϵM = ϵ

[
t

ϵ

]
≈ t = min(s, t).

Thus, X(t) is a discrete time version of a Wiener Process. From its construc-
tion, we can get a feel for how Wiener processes would tend to behave. This
is illustrated below.
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3 Realizations of a (approximate) Wiener Process
[based on a random walk with 1000 steps/unit time]

Note: If X(·) is a Wiener process, and s < t, then
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Y (s, t)
def
= X(t)−X(s)

satisfies

(a) Y (s, t) ∼ N(0, t− s)

(b) Y (s1, t1) ⊥ Y (s2, t2)

for s1 < t1 ≤ s2 < t2.

That is, (a) tells us that displacements in a time interval have a distribution
that depends only on width of interval, and (b) tells us that the process X(·)
has independent increments (Exercise 1).

Another functional of interest is the supremum Y of a Wiener Process X over
a specific time interval; e.g.

Y
def
= sup0≤t≤τ | X(t) | . (3.2)

One example where this arises is in forming confidence bands for a mean
function; we return to this later in the course. It can be shown [see, for
example, Hall & Wellner (1980) and Schumacher (1984)] that for τ = 1 and
for any c > 0

P (Y ≤ c) =
4

π

∞∑
k=0

(−1)k

(2k + 1)
e−π2(2k+1)2/8c2 .

Because of the complexity of this expression, these probabilities have been
tabulated for various choices of c and time intervals (see Hall & Wellner and
Schumacher).

Another functional of interest is the elapsed time, or passage time, until a
process enters a specific state or takes a specific value. For example, when
monitoring treatment differences over time in a clinical trial, suppose that
X(·) denotes some transformation of a test statistic. Then we might be
interested in the first time at which the test statistic attains some critical
value x; that is, in the distribution of the random variable

T (x)
def
= inf{t : X(t) ≥ x} (3.3)
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for some x > 0. In general, T(x) is referred to as the first passage time of
X(·) to the point x. Before developing this, we introduce the notion of stop-
ping times.

Definition: Consider a stochastic process X(·) and let F(t) denote the
smallest σ-algebra with respect to which X(s) is measurable for each s ≤ t.
Such σ-algebra exists (see Appendix A). Then a random variable T is called
a stopping time for X(·) if the event {T ≤ t} ∈ F(t) for every t (“at time t,
it is known whether T ≤ t from the information on the process X”).

As we will see, the requirement reflected in this definition is necessary to
ensure that T (x) is a measurable random variable.

If the process X is continuous, T (x) is a stopping time:

{T (x) ≤ t} = ∪s≤t {X(s) ≥ x}

= ∩n∈N ∪q≤t,q∈Q

{
X(q) ≥ x− 1

n

}
,

where in both lines we use that X is continuous. The second equality holds
since X(s) ≥ x for some s if and only if for every n ∈ N there is q ∈ Q,
q ≤ s such that X(q) ≥ x − 1

n . The last expression is in the σ-algebra be-
cause countable unions (defining property) and countable intersections (see
Exercises) are. Care is needed here: if X is not continuous, x could be the
limit lims↑tX(s) without X reaching x by t, or lims↓tX(s) could be greater or
equal to x while x is not reached yet at t. Assuming continuity avoids these
issues. Convince yourself that assuming right continuity is necessary. Among
other things, this implies that for continuous processes, the first passage time
is a measurable random variable.

When the underlying process is a Wiener process, several useful and in-
teresting results can be derived about first passage times. We discuss just a
few here.

Theorem 3.1: Suppose W (·) is a Wiener process and that T (x) denotes
the resulting first passage time to the point x. Then the density function of
T (x) is given by
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fT (x)(t) =
| x |√
2πt3

exp−
x2

2t , (3.4)

for t ≥ 0. Note that because of the symmetry of a Wiener process, T(x)
and T(-x) have the same distribution. One can show that this density arises
as that of Z−2, where Z has the N(0,x−2) distribution. The proof of Theo-
rem 3.1 is given in Appendix B to this Unit.

Theorem 3.2: Suppose that W (·) is a Wiener process and define the ”sup”
process M(·) by

M(t) = sup{W (s) : 0 ≤ s ≤ t} .

Then M(t) has the same distribution as | W (t) |, and thus has density func-
tion

fM(t)(m) = 2
1√
2πt

exp(−m2

2t
) for m ≥ 0.

The proof is given in Appendix B.

These results can be used to prove others, such as the following theorem
about the probability that a Wiener process crosses the zero axis during a
specified time interval. For the proof, see Grimmett & Stirzaker (2001).

Theorem 3.3: Suppose that W (·) is a Wiener process satisfying W(0)=0,
and let 0 ≤ t0 < t1. Then

P (W (t) = 0 for some t ∈ (t0, t1)) =
2

π
cos−1

(
(t0/t1)

1/2
)
.

This result illustrates some surprising properties of Wiener processes. For
example, when t0 = 0, this says that the probability that a Wiener process
equals zero in the interval (0, t) is 1 for every t > 0. This is not altogether
surprising when one thinks of a Wiener process as a limit of a random walk.
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Indeed, there is an analogous theorem about a simple (symmetrically dis-
tributed) random walk in discrete time ever crossing the horizontal axis.
Continuing with this analogy (and with t0 = 0), it follows that the random

variable T (0)
def
= inf{t ̸= 0 : W (t) = 0} is zero with probability 1. Further

investigation of this phenomenon shows that a Wiener process has infinitely
many zeros in any non-empty interval [0, t].

Brownian Bridge: The Gaussian process X(·) is a Brownian Bridge on
[0, 1] if

• X(0) = X(1) = 0

• E (X(t)) = 0 0 ≤ t ≤ 1

• C(s, t) = s · (1− t) for 0 ≤ s ≤ t ≤ 1

Note: Var[X(t)] = t(1 − t). A typical sample path for a Brownian Bridge
is illustrated below.
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Realization of a Brownian Bridge

−→ The probabilistic properties of this distribution have been studied and

tabulated. Thus, for example, P
(

sup
0≤t≤1 |X(t)| > 2.5

)
cannot be expressed in

simple algebraic form, but can be obtained from tables (or via simulation).
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We will discuss this further in a later unit.

It is easy to show (Exercise 3) that if W (·) is a Wiener process, then W0(·)
defined by W (t)− t ·W (1) is a Brownian Bridge.
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Convergence of a Sequence of Processes

Let’s now consider some concepts of convergence of stochastic processes. We
will motivate this by the empirical c.d.f. Suppose that T1, T2, . . . , Tn are
i.i.d. random variables with common distribution function F (·). Consider
estimating F (·) by the empirical cdf (“ecdf”), F̂n(·), defined by:

F̂n(t) =
1

n

n∑
i=1

1(Ti ≤ t) for 0 ≤ t < ∞.

That is, F̂n(t) is simply the proportion of observations no greater than t.
This is illustrated below.

(2) (3) (n-1) (n)(1)

nF (t)

1

n-1
n

2/n

1/n

T T T T T

t
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Let’s examine some of its properties. First, fix t and note that if Zi = 1(Ti ≤
t) for i=1,. . .,n, then Z1, Z2, · · · , Zn are i.i.d. Bernoulli(p), where p = F (t).
Then we can write

F̂n(t) =
1

n

n∑
i=1

Zi.

It follows that

• E[F̂n(t)] = E[Zi] = F (t); i.e., F̂n is unbiased

• Var[F̂n(t)] =
V (Zi)

n
=

F (t) · [1− F (t)]

n

• F̂n(t)
P−→ F (t) as n → ∞ (by the WLLN)

•
√
n
{
F̂n(t)− F (t)

}
L−→ N [0, F (t)[1− F (t)]]

as n → ∞ (by the ordinary CLT).

Thus, for example, an approximate 95% CI for p = F (t) is given by

F̂n(t)± 1.96

√
F̂n(t)[1− F̂n(t)]

n
.

We have been focusing on the distribution of F̂n(t) for the fixed t; i.e.,
on the r.v. Zn = F̂n(t). Later we will consider the entire stochastic
process F̂n(·). This requires us to define the concepts of ‘convergence’
for stochastic processes.
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Additional Reading and Discussion

The text by Grimmett and Stirzaker (2001) includes some useful results about
stochastic processes, including some foundational considerations.

Sample Paths versus Finite Dimensional Distributions: The un-
derlying phenomenon reflected in Example 3.1 leads to more general issues
in how to characterize and study the probabilistic properties of a stochastic
process X(·). To examine this further, note that for any integer k and any
k times, say 0 ≤ t1 < t2 < · · · < tk < ∞, we can consider the usual distri-
bution function of the k-vector (X(t1), X(t2), · · · , X(tk)). The set of all such
distributions, for all integers k and all k-tuples (t1, t2, · · · , tk), is called the set
of finite dimensional distributions (fdd) of X(·). Intuitively, one might
think that knowledge of the fdd’s fully describes all probabilistic aspects of
a stochastic process. Alternatively, one could envision studying the proba-
bilistic features of a process by studying the properties of its sample paths.
Thus, we could:

(1) Study the properties of the sample paths X(·;ω) for every ω ∈ Ω; or

(2) Study the collection of finite dimensional distributions of X(·).

Because of the uncountably infinite number of random variables X(t) that
comprise X(·), it turns out that the collection of fdd’s does not necessarily
tell us everything of interest about the behavior of X(·). This is illustrated
in the following example.

Example 3.4: Suppose that the random variable U is defined on the unit
interval probability space and has the Uniform(0,1) distribution. Consider
the 2 stochastic process, X(·) and Y (·), defined for 0 ≤ t ≤ 1 by X(t) = 0
for all t and Y (t) = 1 when U = t and zero otherwise. Since P (U = t) = 0
for every t, the processes X(·) and Y (·) have the same fdd’s; that is, for any
k, any 0 ≤ t1 < · · · < tk ≤ 1, and any x1, · · · , xk, we have that

P (X(t1) ≤ x1, · · · , X(tk) ≤ xk) = P (Y (t1) ≤ x1, · · · , Y (tk) ≤ xk) .
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However,X(·) and Y (·) are clearly different processes. In particular, P (X(t) =
0 for all t ) = 1 while P (Y (t) = 0 for all t ) = 0.

In general, we say that 2 stochastic processes are versions of one another if
they have the same set of fdd’s. When our interest is in probabilistic features
of a process that can be described in terms of its fdd’s, such as a patient’s
blood sugar levels at monthly visits, non-identical processes that are versions
of one another will lead to the same probabilities. However, if we were inter-
ested in a feature such as the elapsed time between states of a process, two
processes that are versions of one another may have different properties. For
example, in Example 3.4, consider the time until each process first takes the
value 1. The process X(·) never takes such a value while for the process Y (·),
the time is just U .

The previous example illustrates that the fdd’s of a stochastic process do not
necessarily describe all of its probabilistic features. An underlying problem
causing this is that σ-algebras need not be closed under an uncountably in-
finite number of intersections. If all events of interest could be described in
terms of a countably infinite number of unions or intersections of events in
A, then we could avoid this problem. For example, suppose that the sample
paths of a stochastic process are continuous in t. Then since the rationals
are dense in R, knowledge of the values of each sample path X(·;ω) for all
rational t would fully determine the sample path. Thus, any events describ-
able by the process would be elements in the σ-algebra A. This suggests that
the problems illustrated above can be avoided if we restricted ourselves to
processes whose sample paths were continuous. This is further illustrated in
the following example.

Example 3.5: Consider the unit interval probability space and suppose
that W (·) is a Wiener Process. Define the random variable S to be the
elapsed time until W (·) first takes the value 1; that is,

S = inf{t : W (t) = 1} .

It follows that the event {S > t} can be expressed as
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{S > t} =
∩

0≤s≤t

{W (s) < 1} .

As in Example 3.3, we cannot immediately conclude that this event is in A
since σ-algebras need not be closed under uncountably infinite intersections.
However, sample paths of W (·) are continuous. Hence, with Q the rational
numbers,

{S > t} =

{
max
s∈[0,t]

W (s) < 1

}
=

∪
n∈N

{
max
s∈[0,t]

W (s) ≤ 1− 1

n

}
=

∪
n∈N

∩
s∈[0,t]

{
W (s) ≤ 1− 1

n

}
=

∪
n∈N

∩
s∈[0,t]∩Q

{
W (s) ≤ 1− 1

n

}
where in the first line we use that a continuous function on a closed interval
attains a maximum, in the second line we use that if the maximum is less
than 1, it is less than 1 − 1/n for some natural number n, and in the last
line we use that if W (s) ≤ 1 − 1/n for all s ∈ [0, t] ∩ Q, W (s) ≤ 1 − 1/n
for all s ∈ [0, t]. The latter can be proved as follows. Let s ∈ [0, t] be given.
Then s = limk→∞ sk for some sequence sk ∈ [0, t] ∩Q. Because of continuity
of W , W (s) = limk→∞W (sk) ≤ 1− 1/n. We conclude that the above equa-
tion holds. It follows that the event {S > t} is a countably-infinite union of
countably-infinite intersections of measurable events, and thus an element in
the underlying σ-algebra.
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Thus, if a process X(·) were a version of another process Y (·) and each had
continuous sample paths, then they would not only have the same fdd’s,
but any event defined in terms of (possibly uncountably infinite) values of
one process would have the same probability as the same event defined in
terms of the other process, and the problem illustrated in Example 3.4 could
not occur. In practice, however, it is sometimes too restrictive to restrict
attention to processes with continuous sample paths. For example, in the
stochastic process that represents the number of asthma attacks experienced
by a child that we described earlier, the sample paths are right-continuous
but not continuous. Fortunately, the nice feature of processes with contin-
uous sample paths illustrated above also applies to processes whose sample
paths are right-continuous or processes whose paths are left-continuous. The
following theorem (taken from Breiman, 1968, pages 299-300), shows that
for many processes there exists a version with right-continuous sample paths
with left-hand limits.

Theorem 3.4: Let X(·) be a stochastic process defined for t ≥ 0 and let
D be a subset of [0,∞) that is dense in [0,∞). Then if

(a) X(t+ h)
P→ X(t) as h ↓ 0 for all t, and

(b) lims↑tX(s), s ∈ D and lims↓tX(s), s ∈ D exist and are finite for all
t ∈ [0,∞) where these limits can be defined, possibly except for ω in a set of
probability 0 that does not depend on t.

Then there exists a version, Y (·), of X(·) with right-continuous sample paths
and left-hand limits in the sense that limh↓0X(t− h) exists for all t.

Processes that are right-continuous with left-hand limits are sometimes called
“cadlag” processes. This comes from “continue à droite, limite à gauche”.
This theorem says that if (a) and (b) hold, there exists a probability space
and a cadlag process Y (·) defined on this space such that Y (·) has the same
fdd’s as the original process X(·). It essentially allows us to assume that all
processes satisfying (a) and (b) are cadlag. The trivial process Y (·) described
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in Example 3.4 is seen to satisfy these conditions. Other processes, such as
the empirical c.d.f. Fn(·) are already cadlag. Yet others need not be, yet we
will later see that one can find a version that is cadlag or that has continuous
sample paths. When we study Gaussian processes, we will usually restrict
ourselves to processes with continuous sample paths.

We conclude this discussion with one additional existence consideration. We
often begin a discussion with something like ”Suppose that X(·) is a Gaus-
sian process ....”. But how do we know that such processes exist? With a
random variable, say X ∼ F (·), this can be shown by simple construction.
For example, with the unit interval probability space we can define the Uni-
form[0,1] random variable U by U(ω) = ω and then define X = F−1(U). Is
there an analogy for stochastic processes? The answer is yes; for a formal
proof see the text by Kingman & Taylor (1973) or the text by Grimmett &
Stirzaker (2001). This can be seen heuristically by viewing a Wiener process
W (·) as a limiting case of a simple random walk in discrete time. The same
can be done with other processes. For example, Brownian Bridge processes,
say W0(·), can be constructed via Wiener processes by W0(t) = W (t)−tW (1)
for 0 ≤ t ≤ 1.
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Appendix A

Probability Spaces and Random Variables

1. An axiomatic treatment of probability starts with “outcomes” from a
random experiment. A random experiment refers to any repeatable
mechanism that generates values in some set Ω, called the sample space.
In case we observe only one survival time, the form of Ω could sim-
ply be R. In case we observe n survival times, the form of Ω could be
Rn. When researching properties of estimators, we often consider sam-
ple spaces on which a countable number of survival times are defined
(n = 1, . . . ,∞), sometimes combined with, possibly even time depen-
dent, covariates. The form of Ω is then more complex. Usually we do
not bother about the form of Ω.

2. An event is a subset of the sample space. A probability is a function
defined on a collection of events satisfying some axioms. We would
like to be able to form new events via operations like taking unions and
complements of events and to compute the probability of the new events.
It turns out that a theory of probability that is both useful and quite
general can be built by allowing countable operations. This entails using
σ-algebras as the collection of events, and countably additive measures
as the probabilities; see below.

3. A σ-algebra is a collection A of subsets of Ω satisfying some properties.
Often, especially later in this course, the idea behind a σ-algebra is that
after an experiment, some information on ω ∈ Ω is revealed: after the
experiment we know for all A ∈ A whether ω ∈ A or not. The defining
properties of a σ-algebra A are:

• ∅ ∈ A
• Closed under complementation: A ∈ A ⇒ Ac ∈ A.

• Closed under countable unions: An ∈ A, n ∈ N ⇒ ∪n∈NAn ∈ A.

Sets in the σ-algebra are called measurable sets. An example of a σ-
algebra on Ω = {1, 2, 3} is the collection of sets ∅, {1}, {2, 3}, and
{1, 2, 3}. The meaning of this is that after the experiment, it is known
whether ω = 1. Another example of a σ-algebra on Ω = {1, 2, 3} is the
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collection of all subsets of {1, 2, 3}. The meaning of this is that after the
experiment, it is known whether ω is 1, 2, or 3. This way, it is clear that
the “richer” σ-algebra, containing more sets, reveals more information
on ω.

4. It can be shown (Exercise 4) that intersections of elements in the σ-
algebra are also elements of the σ-algebra. This is also true for countable
intersections.

5. A probability space is a sample space Ω along with a σ-algebra A defined
on the sample space: (Ω,A).

6. A probability measure on a probability space (Ω,A) is a set function
P : A → [0, 1] satisfying:

• P (Ω) = 1

• Countable additivity: if An ∈ A, n ∈ N and An pairwise disjoint,
then P (∪n∈NAn) =

∑
n∈N P (An).

The σ-algebra here is important, since it turns out that it is not always
possible to meaningfully assign probabilities to all subsets of the sample
space; hence, not always all subsets of the sample space are events, or
members of A.

7. So, after the experiment, we observe whether ω ∈ A for all A ∈ A, and
before the experiment, there is a probability of ω ∈ A for all A ∈ A. A
represents the information available due to the experiment.

8. A scalar random variable X on (Ω,A, P ) is a mapX from Ω to R which is
measurable: for any x ∈ R, {ω ∈ Ω : X(ω) ≤ x} ∈ A. Or, equivalently,
X−1 ((−∞, x]) ∈ A.

9. Thus, for a random variableX, after the experiment, it is known whether
X ≤ x, and before the experiment, there is a probability attached to
whether or not X ≤ x.

10. It turns out that if X is a random variable on (Ω,A, P ), also, for every
x ∈ R:

• {ω ∈ Ω : X(ω) ≥ x} ∈ A
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• {ω ∈ Ω : X(ω) = x} ∈ A
• {ω ∈ Ω : X(ω) < x} ∈ A
• {ω ∈ Ω : X(ω) > x} ∈ A.

Hence, these are all events, and their probabilities are well-defined.
These properties follow from the properties of a σ-algebra. See also
Exercise 4.

11. Notice that the set of all subsets of Ω is a σ-algebra. For Ω = {1, 2, 3},
this would be the collection of sets ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},
and {1, 2, 3}. Convince yourself that the intersection of σ-algebras is
again a σ-algebra. Hence, for any collection D of sets of Ω, there exists
a smallest σ-algebra containing all sets in D (it is the intersection of all
σ-algebras containing D). This is called the σ-algebra generated by D.
For example, with Ω = {1, 2, 3}, the σ-algebra generated by the set {1}
consists of the following sets: ∅, {1}, {2, 3}, {1, 2, 3}. Again, this is the
σ-algebra revealing information on whether or not ω = 1.

12. Note: although σ-algebras are defined through countable operations, the
σ-algebra generated by a collection of sets is not necessarily obtained by
countable operations on the collection. (This is not easy to see).

13. The Borel σ-algebra B on [0, 1] is the σ-algebra generated by the intervals
[0, x]: x ∈ [0, 1]. Not all subsets of [0, 1] are in the Borel σ-algebra.
Convince yourself that points and intervals (open, closed, half open and
half closed) are in the Borel σ-algebra.

14. Similarly, the Borel σ-algebra B on [0,∞) is the σ-algebra generated by
the intervals [0, x]: x ∈ [0,∞).

15. Some examples in this unit mention the unit interval probability space
([0, 1] ,B, µ) with B the Borel σ-algebra and µ the Lebesgue measure.
The Lebesgue measure assigns probability x to each interval [0, x]: x ∈
[0, 1]. One can show that that leads to a unique probability measure
on the probability space ([0, 1] ,B). Under the Lebesgue-measure, the
probability of ω falling in any interval in [0, 1] equals the length of that
interval. This is true for open, closed, or half open and half closed
intervals. Thus, all values in [0, 1] are equally likely. And if you consider
ω as a random variable, it has the uniform[0, 1]-distribution.
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For more about random variables and σ-algebras we refer to the book “Prob-
ability and Measure” by Billingsly (1995).
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Appendix B

Proof of Theorem 3.2: Suppose that m > 0 and note that

T (m) ≤ t if and only if M(t) ≥ m . (3.5)

Then

P (M(t) ≥ m) = P (M(t) ≥ m,W (t)−m ≥ 0)+P (M(t) ≥ m,W (t)−m < 0).

However, by (3.5) and since W (T (m)) = m,

P (M(t) ≥ m,W (t)−m < 0] = P [T (m) ≤ t,W (t)−W (T (m)) < 0)

= P (W (t)−W (T (m)) < 0 | T (m) ≤ t)P (T (m) ≤ t)

= P (W (t)−W (T (m)) ≥ 0 | T (m) ≤ t)P (T (m) ≤ t)

= P (M(t) ≥ m,W (t)−m ≥ 0),

where we have used the facts that W (t) − W (T (m)) is symmetrically dis-
tributed about zero whenever t ≥ T (m). Thus,

P (M(t) ≥ m) = 2P (M(t) ≥ m,W (t) ≥ m) = 2P (W (t) ≥ m),

since W (t) ≤ M(t). Hence

P (M(t) ≥ m) = P (| W (t) |≥ m),

and so the theorem is proven since | W (t) | has the | N(0, t) | distribution.

Proof of Theorem 3.1: Note that for x ≥ 0 and from Theorem 3.2,

P (T (x) ≤ t) = P (M(t) ≥ x) = P (| W (t) |≥ x).

Thus,

P (T (x) ≤ t) = (
2

πt
)1/2

∫ ∞

x

exp(−m2

2t
)dm =

∫ t

0

| x |√
2πy3

exp(−x2

2y
)dy ,

where we have made the substitution y = x2t/m2.
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Exercises

1. Suppose X(·) is a Wiener Process and t ≥ s.

(a) Prove Y (s, t)
def
= X(t)−X(s) is N(0, t− s).

(b) Prove Y (s1, t1) ⊥ Y (s2, t2), where s1 < t1 ≤ s2 < t2.

2. Consider the ecdf , say F̂n(t), based on n i.i.d. random variables T1, T2, . . . , Tn.

Find Cov
(
F̂n(s), F̂n(t)

)
for s < t.

3. Show that if W (·) is a Wiener process, then W0(·) defined by
W0(t) = W (t)− t ·W (1) is a Brownian Bridge.

4. Properties of random variables and σ-algebra’s (see Appendix A):

(a) Show that if X is a random variable, {X > x} is an event for all
x ∈ R.

(b) Show that if X is a random variable, {X < x} is an event.

(c) Show that if A and B are events, also A ∩B is an event.

(d) Show that if X is a random variable, {X = x} is an event.

(e) Show that if An, n ∈ N, are events, also ∩n∈NAn is an event.

(f) Show that we could as well have defined a random variable starting
with events {X < x}

(g) Can you give more examples like in f?

(h) If S is not in a σ-algebra, can Sc (S-complement) be in the σ-
algebra?

5. In Example 3.1, show that X(t) is A-measurable for every t.
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6. Consider the unit interval probability space. Show that with the defi-
nition in Appendix A, under the Lebesgue-measure, the probability of
ω falling in any interval in [0, 1] equals the length of the interval. Also,
show that the probability that ω = x is 0 for each x.

7. Show that if X(·) is a modification of Y (·), then for any k > 0, k ∈ N and
t1, t2, . . . , tk ∈ I, the k-dimensional random vector (X(t1), . . . , X(tk)) has
the same distribution as (Y (t1), . . . , Y (tk)).

8. Assume Theorem 3.3. Show that the random variable T (0)
def
= inf{t ̸=

0 : W (t) = 0} is zero with probability 1.

9. Suppose that v(·) is a nondecreasing and bounded deterministic function
for which v(0) = 0. If W (·) is a Wiener process, show that

X(·) def
= W (v(·))

is a zero-mean Gaussian process with independent increments and vari-
ance funcion v(·).
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