
BIO 244: Unit 5

Kaplan-Meier (KM) Estimator

Introduction: In this section we consider the nonparametric estimation of
a survivor function S(·) based on n i.i.d. survival times that can be nonin-
formatively right censored. The resulting estimator–commonly known as the
Kaplan-Meier Estimator or the Product-Limit Estimator–is probably one of
the most commonly-used estimators in medical/public health studies involv-
ing failure time data. The development will be largely heuristic, with formal
proofs of large-sample properties deferred to later units.

Suppose that T1, T2, . . . , Tn are i.i.d. survival times with survivor function
S(·), with C1, C2, . . . , Cn the censoring times, i.i.d. and independent of the
Ti, and suppose that our observations are denoted (Ui, δi) for i = 1, 2, . . . , n,
with

Ui = Ti ∧ Ci, δi = 1{Ti≤Ci}.

To begin, let us suppose that F (·) is discrete with mass points at v1 < v2 < · · ·
(where v1 ≥ 0), and define the discrete hazard functions

h1 = P [T = v1]

and
hj = P [T = vj | T > vj−1]

for j > 1.

Note that for t ϵ [vj, vj+1),

S(t)
def
= P (T > t) = P (T > vj)

= P (T > vj | T > vj−1)P (T > vj−1)

= P (T > vj | T > vj−1)P (T > vj−1 | T > vj−2)P (T > vj−2)
...

= (1− hj)(1− hj−1) · · · (1− h1) =
∏j

i=1(1− hi).
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Similarly, define f1 = h1 and, for j > 1,

fj
def
= P (T = vj) = hj ·

j−1∏
i=1

(1− hi).

Now consider making an inference about F based on the likelihood function
corresponding to (Ui, δi) for i=1,2,...,n. This is just

L(F ) =
∏

Ui:δi=1

f(Ui) ·
∏

Ui:δi=0

(1− F (Ui)).

Substituting the hj, this becomes (after some algebra):

L(F ) =
∏
j

h
dj
j (1− hj)

Y (vj)−dj , (5.1)

where 0 ≤ hj ≤ 1 and

dj =
n∑

i=1

δi · 1{Ui=vj} = # who fail at vj

and

Y (vj) =
n∑

i=1

1{Ui≥vj} = # “at risk” at vj.

The maximizing solution is seen to be (for Y (vj) > 0):

ĥj = dj/Y (vj),

so that

Ŝ(t) =


1 t < v1
j∏

i=1

(1− ĥi) vj ≤ t < vj+1.

Notice that the expression for ĥj makes sense: the probability of dying at vj
given you are alive before is estimated by dj/Y (vj). Also the expression for
Ŝ(t) makes sense: the probability of staying alive at vj if alive before vj is
estimated by (1− dj/Y (vj)).
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Example: Suppose that vj : 2, 4, 5, 7, 9, 11, 16, 18, 20, and the data are as
follows:

n = 10, (ordered) observations = 2, 2, 3+, 5, 5+, 7, 9, 16, 16, 18+, where + means
censored. Then we have:

vj Y (vj) dj ĥj Ŝ(vj) =

j∏
i=1

(1− ĥi) = P̂ (T > vj)

2 10 2 2/10 .8

4 7 0 0 .8 (= 8
10 × 1)

5 7 1 1/7 .69 (= .8× 6
7)

7 5 1 1/5 .55

9 4 1 1/4 .41

11 3 0 0 .41

16 3 2 2/3 .14

18 1 0 0 .14

20 0 0 not not
defined defined

Note 1: — Suppose that vg denotes the largest vj for which Y (vj) > 0
(e.g, vg = 18 in the example). Then either dg = Y (vg) or dg < Y (vg). If
dg = Y (vg), then ĥg = 1, and hence Ŝ(t) = 0 for t ≥ vg. That is, the Kaplan-
Meier estimator is zero beyond time vg. On the other hand, if dg < Y (vg),
then Ŝ(vg) = P̂ (T > vg) > 0 and Ŝ(t) is not defined for larger t. Here the
Kaplan-Meier estimator is an incomplete distribution–the remaining mass
beyond time vg is not defined. One way to view this is that the ML estimator
of S(·) is not unique: any survivor function that is identical to Ŝ(t) for t ≤ vg
maximizes the likelihood.

Note 2: — As illustrated in the example, when calculating Ŝ(t), we only need
to consider those vj for which dj > 0.
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Note 3: Recall that S(t) is defined as being right-continuous; that is, S(t) =
P [T > t]. While this doesn’t matter for continuous T , it does for discrete
distributions.

What if we didn’t know, in advance, the times at which F had mass and did
not necessarily want to assume that it had to be discrete? The likelihood
function is just as before; i.e.,

L = L(F ) =
n∏

i=1

{
f(ui)

δi(1− F (ui))
1−δi

}
.

However, we now need to find the maximizing solution for FϵF =
{

all cdf ’s︸ ︷︷ ︸ }
↗

discrete, continuous, mixed

Kaplan and Meier argue that the maximizing solution must be a discrete
distribution with mass on the observed times Ui only (see exercises). The
same algebra as above leads to the same form of solution as above. Notice
that this means that the Kaplan Meier estimator actually puts mass only
on the observed failure times. That is, the Kaplan-Meier (or Product-Limit)
estimator of F (·) is

Ŝ(t) =


1 t < v1
j∏

i=1

(
1− di

Y (vi)

)
if vj ≤ t < vj+1 (5.2)

where v1 < v2 < · · · are distinct failure (uncensored) times. Thus, we
can view Ŝ(·) as a nonparametric MLE of F (·); this is sometimes denoted
NPMLE.
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One alternative (equivalent) representation of Ŝ(t) is given by:

Ŝ(t) =
∏

j : vj≤t

(
Y (vj)− dj

Y (vj)

)
for t ≤ max(vi), (5.3)

where v1 < v2 < · · · are the distinct observed failure times.

It is instructive to think about how the Kaplan Meier estimator places mass
at the observed failure times. One way of gaining insight into this is by a
construction of Ŝ(t) due to Efron (1967). This is known as the ’Redistribu-
tion of Mass’ algorithm (also called redistribute to the right algorithm) (for
another algorithm, see Dinse 1985).

Step 1 Arrange data in increasing order, with censored observations to the right
of uncensored observations in the case of ties.

Step 2 Put mass 1/n at each observation.

Step 3 Start from the smallest observation and move ‘right’. Each time a cen-
sored observation is reached, redistribute its mass evenly to all observa-
tions to the right.

Step 4 Repeat Step 3 until all censored observations (except largest observa-
tions) have no mass. If largest (vg) is censored, regard this mass as
> vg.

Let’s illustrate this with the previous Example with n = 10.
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Step 1 2 2 3+ 5 5+ 7 9 16 16 18+

Step 2 1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

Step 3 ↓ ↓ ↪→ 1
70

1
70

1
70

1
70

1
70

1
70

1
70

↓ ↓ ↓ ↪→ 1
5(

8
70)

1
5(

8
70)

1
5(

8
70)

1
5(

8
70)

1
5(

8
70)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

Total
2
10 0 8

70 0 24
175

24
175

48
175 Assume

Mass this is
somewhere
> 18

∴ Ŝ(t) =



1 0 ≤ t < 2
.8 2 ≤ t < 5
.69 5 ≤ t < 7
.55 7 ≤ t < 9
.41 9 ≤ t < 16
.14 16 ≤ t ≤ 18
not 18 < t
defined

.5

1

Ŝ(t)

0 2 4 6 8 10 12 14 16 18

s s s s
s s

◦
◦

◦
◦

◦
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Since Ŝ(·) is a nonparametric estimator of S(·), it follows that a
nonparametric estimator of H(·) = −ln(S(·)) is given by H̃(t) = −ln(Ŝ(t)) =
−
∑j

i=1 ln(1 − ĥi) for vj ≤ t < vj+1. However, for small x, ln(1 − x) ∼ −x
and thus this sum is approximately

∑j
i=1 ĥi. This suggests the alternative

estimator (for j ≥ 1):

Ĥ(t) =

j∑
i=1

ĥi for vj ≤ t < vj+1.

This estimator is sometimes called the Nelson-Aalen estimator of H(·); we
will discuss it further later in the course.

Next consider how we might approximate the distribution of Ŝ(t). One ap-
proach is to use the large-sample properties of maximum likelihood estima-
tors, assuming that such results apply in this setting (the usual regularity
conditions do not hold here since the space we are maximizing over is not a
finite-dimensional parameter space). Nevertheless, let’s proceed as if this is
not a problem. Then from (5.1)

L = L(h1, h2, . . .) =
∏
j

h
dj
j (1− hj)

Y (vj)−dj

and hence

− ∂2lnL

∂hj ∂hk
= 0 j ̸= k

−∂2lnL

∂h2
j

∣∣∣∣∣
hj=ĥj

= Y (vj)/(ĥj(1− ĥj))

−→ ĥ1, ĥ2, . . . are approximately uncorrelated, with approximate means
h1, h2, . . . , and

Var(ĥj) ≈ ĥj(1− ĥj)/Y (vj) =
dj(Y (vj)− dj)

Y (vj)3

Since Ŝ(t) is a product of terms of the form 1 − ĥj, it follows that Ŝ(t) is
approximately unbiased in the discrete time setting as in the beginning of
this unit.
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For now, let us suppose that we are in the discrete time setting as in the
beginning of this unit. Let’s consider an estimator of the variance of the
Kaplan-Meier estimator.

For vj ≤ t < vj+1 : Var
(
lnŜ(t)

)
≈

j∑
i=1

Var
(
ln(1− ĥi)

)
δ−method

=

j∑
i=1

Var
(
ĥi

)
· 1

(1− ĥi)2

=

j∑
i=1

di
Y (vi)(Y (vi)− di)

.

Using the δ-method again, we get what is commonly called ”Greenwood’s
Formula”

Var
(
Ŝ(t)

)
≈ Var

(
lnŜ(t)

)(
elnŜ(t)

)2

= Ŝ(t)2Var
(
lnŜ(t)

)

≈ Ŝ(t)2
j∑

i=1

di
Y (vi)(Y (vi)− di)

(vj ≤ t < vj+1).

One use of Greenwood’s formula is to get an approximate confidence interval

(e.g., a 95% CI) for S(t). One obvious choice is Ŝ(t) ± 1.96

√
V ar(Ŝ(t)).

However, this could give limits that are greater than 1 or less than 0. One
alternative is to note that ln(−lnŜ(t)) can take values in (−∞,∞). Thus,
using the delta method, we can approximate the variance of ln(−lnŜ(t)) from
V ar(Ŝ(t)), resulting in

V ar
(
ln

(
−lnŜ(t)

))
≈

∑j
i=1

di
Y (vi)(Y (vi)−di)(
lnŜ(t)

)2 .

Given an approximate 95% CI for ln(−lnS(t)) we can re-express to get the
corresponding CI for S(t) (see Exercises).
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Breslow and Crowley (1974) show that as n → ∞,

√
n

(
Ŝ(·)− S(·)

)
w→ zero mean Gaussian process.

Their proof is quite long and complex. We will later see that this results
follows quite easily by representing the Kaplan-Meier estimator (properly
transformed) as a Martingale process.

As noted earlier, the Kaplan-Meier estimator is used extensively to describe
failure distributions that arise in public health and medicine. It also can be
used to assess the goodness-of-fit (GOF) of a parametric assumption about
F. We illustrate this with 2 examples.

Exponential Distribution: Suppose we want to check whether T ∼ Exp(λ).
If it were, then H(t) = λt, and ln(S(t)) = −H(t) = −λ · t. Hence we can
plot ln(Ŝ(t)) vs t (where Ŝ is the Kaplan-Meier estimator) and visually check
whether it appears linear; if so, data support the exponential assumption.

t

0 linear?

ln S(t)

If plot appears linear, lnS(t) ≈ −ct
or T ≈ Exp(c)
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Weibull Distribution: Now suppose we want to check if T ∼ W (λ, p),
which would imply that

H(t) = λptp ⇒ lnS(t) = −λptp

⇒ ln(−lnS(t)) = p · lnλ+ plnt.

Thus, we can check this assumption by plotting ln(−lnŜ(t)) vs ln(t) and
checking for linearity.

Extensions to other parametric forms follow in the same way. The basic idea
is to transform the c.d.f., survivor function, or integrated hazard function
in a way that has a simple visual form (e.g., linearity), then replacing the
S(·), F (·), or H(·) with its nonparametric estimator, and then checking the
visual form.
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SAS Commands for Kaplan Meier Estimators

Consider the dataset AZT-ddI.dat. For dataset AZTddI, with “Tad” as the
time variable, “ad” as the censoring variable (ad=0 indicates censoring, ad=1
indicates event), and “rx” as the grouping variable, the following code gen-
erates Kaplan Meier curves per group:

proc lifetest data=AZTddI plots=(s) outsurv=aidssurv;
time Tad *ad(0));
strata rx;

run;

Outsurv=aidssurv generates a dataset aidssurv with the estimated values of
the survivor function (Kaplan Meier estimator) for each group time.

For more details, see SAS help.
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STATA Commands for Kaplan Meier Estimators

As with other survival analyses, one begins with the stset command to de-
fine the variables that represent the observed portion of survival (U) and the
censoring indicator (δ): stset Tad, failure(ad) in the case of the dataset with
the AZT-ddI data, where U=Tad and δ=ad.

The main STATA command is .sts. Specifically:

.sts list This gives a table with the output of the Kaplan-Meier anal-
ysis. Variations include stratified analysis by another variable; e.g. .sts
list,by(gender)

.sts graph This produces a plot of the Kaplan-Meier estimator. As above,
there are options such as .sts graph,by(gender)

sts gen varname=s This creates a new variable ’varname’ whose value
for subject i is Ŝ(ui); that is, the value of the Kaplan-Meier estimator at the
observed value Ui for this subject. As above, there are numerous options.

For more details, use the .help sts command in STATA.
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Exercises

1. Find the K-M estimator for the following data (n = 21):

6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

Also find an approximately 95% CI for S(t) when t = 21.

2. Derive an algebraic expression for an approximate 95% CI for S(t) that
will always give an interval in [0, 1]. Make clear why this is an interval
within [0, 1]!

3. Show that the K-M estimator reduces to the ecdf when there are no
censored observations.

4. Suppose you had a random sample, say (Ui, δi), i = 1, . . . , n, of censored
survival data from a homogeneous population. Describe a graphical
goodness-of-fit procedure to assess whether the hazard function for the
underlying survival distribution is linear in t; that is, whether the hazard
is of the form h(t) = α+ βt for some unknown α, β.

Apply this to the data above.

5. A ‘natural’ estimator of H(t) is given by

H̃(t) =
∑
j:

dj/Y (vj)

From this, we could use the relationship S(t) = ēH(t) to get the estimator

S̃(t) = ēH̃(t).

Show that this is approximately the same as the K-M estimator.
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(H̃(·) is often called the Nelson-Aalen estimator; we will consider it again
later).

6. Consider the Kaplan-Meier estimator of S(t) = P (T > t) based on n
observations. Let t0 > 0 be fixed. Prove that when the smallest cen-
sored observation exceeds t0, the Kaplan-Meier estimator of S(t0) equals
(n− n0)/n, where n0 is the number of failures prior to t0.

7. Consider the following data set, where ”+” denotes a censored value:
11.9, 6.3, 1.4+, 2.9, 7.7+, 12.4+, 4.4, 9.2+. Compute the Kaplan-Meier
estimator of the survival function S(t) = P (T > t). Be sure to define
the estimator for all t at which it is defined.

8. Suppose we have (possibly right censored) survival data for each of two
groups. Describe a graphical test for the assumption that the hazards
for the 2 groups are proportional.

9. Show that ĥj on page 2 is equal to dj/Y (vj). If you use (5.1), derive
(5.1), too.

10. Show that

−∂2lnL

∂h2
j

∣∣∣∣∣
hj=ĥj

= Y (vj)/(ĥj(1− ĥj))

on page 7 holds.

11. Consider the situation on page 4, where we did not know in advance
the times at which F had mass, and where we wanted to maximize the
likelihood. Suppose that some potential maximizer has some mass δ in
between two consecutive observations U(i) and U(i+1). What happens
with the likelihood if you move this mass to U(i)? And to U(i+1)? Argue
why this implies that the Kaplan-Meier estimator only puts mass on the
Ui. In addition, argue why the Kaplan-Meier estimator does not put
mass where di = 0.

12. Suppose that you plan to conduct a randomized clinical trial that com-
pares 2 treatments, say A and B, for the prevention of recurrence of
colon cancer. The outcome (response) variable is time from randomiza-
tion to recurrence. It is anticipated that the enrollment (randomization)
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of patients will be completed 3 years after the start of the trial, and all
patients will be followed for the outcome variable from the time they
are randomized until 2 years after the last patient is enrolled. Thus,
depending when they enroll, each patient will be followed for 2-5 years,
and her/his time until recurrence will be right censored if recurrence
does not occur while he/she is followed. Patients begin their treatment
immediately upon randomization. It is generally believed that if colon
cancer does not recur within 3 years after beginning treatment, then it is
unlikely to recur thereafter. For this reason, you are interested in testing
the null hypothesis H0 : SA(3) = SB(3), that the survivor functions for
the 2 treatments are equal at 3 years.

Note that the choice of this null hypothesis, as opposed to something
like the equality of the hazard function of the 2 groups between t=0
and t=3 years, is implicitly stressing the importance of not recurring
by 3 years. The reason for this is that, under the premise of the prob-
lem, not having a recurrence by year 3 amounts to “cure”. Thus, the
null hypothesis implies that we don’t care about differences between the
hazard functions of the groups before year 3 unless these translate into
a difference between the survivor functions at year 3.

(a) How would you graphically display the overall survival experi-
ences of the patients in each treatment group? If colon cancer would
not recur after 3 years if it hasn’t done so by 3 years, what would you
expect to see in your graph?

(b) Describe how you would test H0. Please be specific by clearly
defining a test statistic and its approximate null distribution.
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