
BIO 244: Unit 6

Logrank Test

6.1 Introduction: The logrank test is the most commonly-used statistical
test for comparing the survival distributions of two or more groups (such as
different treatment groups in a clinical trial). The purpose of this unit is to
introduce the logrank test from a heuristic perspective and to discuss popular
extensions. Formal investigation of the properties of the logrank test will be
covered in later units.

Assume that we have 2 groups of individuals, say group 0 and group 1. In
group j, there are nj i.i.d. underlying survival times with common c.d.f. de-
noted Fj(·), for j=0,1. The corresponding hazard and survival functions for
group j are denoted hj(·) and Sj(·), respectively.

As usual, we assume that the observations are subject to noninformative right
censoring: within each group, the Ti and Ci are independent.

We want a nonparametric test of H0 : F0(·) = F1(·), or equivalently, of
S0(·) = S1(·), or h0(·) = h1(·).

If we knew F0 and F1 were in the same parametric family (e.g., Sj(t) = e−λjt),
thenH0 is expressible as a point/region in a Euclidean parameter space. How-
ever, we instead want a nonparametric test; that is, a test whose validity does
not depend on any parametric assumptions.

As the following picture shows, there are many ways in which S0(·) and S1(·)
can differ:
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It is intuitively clear that a UMP (Uniformly Most Powerful) test cannot
exist for

H0 : S0(·) = S1(·)
vs H1 : not H0.

Two options in this case are to select a directional test or an omnibus test.

(a) directional test: These are oriented to a specific type of difference;
e.g., S1(t) = [S0(t)]

θ for some θ. As a result, they might (and often do) have
poor power against certain other alternatives.

(b) omnibus test: These tests attempt to have some power against
most or all types of differences. As a result, they sometimes have substantially
lower power than a directional test for certain alternatives. For example, a
test might be based on

∫
| Ŝ1(t)− Ŝ2(t) | dt over some time interval.

It is difficult to make the choice between directional tests, or between direc-
tional vs omnibus tests, in the abstract. It involves several factors, including
prior expectations of the likely differences, properties of various tests for a
variety of settings, and practical consequences of a false negative result.
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6.2 Logrank Test: Early work (1960s) in this area fell along 2 lines:

(a) Modify rank tests to allow censoring (Gehan, 1965).

(b) Adapt methods used for analyzing 2×2 contingency tables to accom-
modate censoring (Mantel, 1966).

We introduce the logrank test from the latter perspective as it easily includes
tests developed from the former and provides good insight into the properties
of the logrank test.

Logrank Test Construction: Denote the distinct times of observed failures
as τ1 < τ2 < · · · < τk, and define

Yi(τj) = # persons in group i who are at risk at τj (i = 0, 1; j = 1, 2, . . . , k)
Y (τj) = Y0(τj) + Y1(τj) = # at risk at τj (both groups)

dij = # in group i who fail (uncensored) at τj (i = 0, 1; j = 1, 2, . . . , k)
dj = d0j + d1j = total # failures at τj

The information at time τj can be summarized in the following 2x2 table:

observed to at risk
fail at τj at τj

group 0 d0j Y0(τj)− d0j Y0(τj)

group 1 d1j Y1(τj)− d1j Y1(τj)

dj Y (τj)− dj Y (τj)

Note: d0j/Y0(τj) can be viewed as an estimator of h0(τj).

Suppose H0 : F0(·) = F1(·) holds. Conditional on the 4 marginal totals, a
single element (say d1j) defines the table. Furthermore, with this condition-
ing and assuming H0, d1j has the hypergeometric distribution; that is:
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P [d1j = d] =

(
dj
d

)(
Y (τj)− dj
Y1(τj)− d

)/(
Y (τj)
Y1(τj)

)
for

d = max(0, dj − Y0(τj)), · · · ,min(dj, Y1(τj)).

The mean and variance of d1j under H0 are thus

Ej =
(
Y1(τj)
Y (τj)

)
dj

Vj =
Y (τj)−Y1(τj)

Y (τj)−1 · Y1(τj)
(

dj
Y (τj)

)(
1− dj

Y (τj)

)
=

Y0(τj)Y1(τj)dj(Y (τj)−dj)
Y (τj)2(Y (τj)−1) .

Define Oj = d1j. Fisher’s test would tell us to consider extreme values of d1j
as evidence against H0.

Thus, define

O =
∑k

j=1Oj = total # failures in group 1

E =
∑k

j=1Ej

V =
∑k

j=1 Vj

and let

Z =
O − E√

V
=

∑
j

(Oj − Ej)√∑
j

Vj

.

Then under H0, it is argued that

Z
apx∼ N(0, 1)

(or that Z2 apx∼ χ2
1)

This approximation can be used to obtain an approximate test for H0 by
comparing the observed value of Z (or Z2) to the tail area of the standard
normal (chi-square) distribution.
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Example:

Group 0 : 3.1, 6.8+, 9, 9, 11.3+, 16.2
Group 1 : 8.7, 9, 10.1+, 12.1+, 18.7, 23.1+

Then k = 5 and τ1, . . . , τ5 = 3.1, 8.7, 9, 16.2, 18.7

Group 0
Group 1

τ1 = 3.1
1 5 6
0 6 6
1 11 12

τ2 = 8.7
0 4 4
1 5 6
1 9 10

τ3 = 9
2 2 4
1 4 5
3 6 9

τ4 = 16.2
1 0 1
0 2 2
1 2 3

τ5 = 18.7
0 0 0
1 1 2
1 1 2

Oj = 0 1 1 0 1

Ej = 1/2 6/10 15/9 2/3 1

Vj = 1/4 6/25 5/9 2/9 0

O = 3, E = 3.44, V = 1.26, Z = −.39 (2-sided P = .70)

Comments:

• While Ej may be a conditional expectation for each j, it is not clear that
E has such an interpretation. Also, the creation of Z and its approx-
imation as a N(0, 1) r.v. suggests that the contributions from each τj

are independent. Is this true/accurate? Then, is Z
L→ N(0, 1) under H0?

• Note the similarity of the logrank test to techniques for combining 2×2
tables across strata (e.g., cities).

• Note that the sequences Y0(τ1), Y0(τ2), Y0(τ3), . . . and Y1(τ1), Y1(τ2), Y1(τ3), . . .
are nonincreasing, and as soon as one reaches 0 [e.g., Y0(τ5) = 0 at
τ5 = 18.7], it must follow that Oj = Ej and Vj = 0 at and beyond this
time. Thus, we would get the same answer (i.e., Z) if the construction
stopped at the last time when both Y0(τj) and Y1(τj) are > 0.
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• Although it is not obvious from the construction, the logrank test is a
directional test oriented towards alternatives where S1(t) = (S0(t))

θ, or
equivalently, when h1(t)/h0(t) = θ. We will see later that the logrank
statistic arises as a score test from a partial likelihood function for Cox’s
proportional hazards model.

• While the heuristic arguments leading to the approximation of the null
distribution of the logrank test seem reasonable, is the result correct?
In addition, how does the test behave as a function of the amount of
censoring or the hazard functions in the two treatment groups? We
return to these important practical questions in later units.

6.3 Some Extensions of the Logrank Test:

Stratified logrank test: Suppose that we have two groups (say, 2 treat-
ments), as before, but that we want to control (adjust) for a categorical
covariate (e.g., gender). Then there are 4=2x2 types of individuals. For
example, their respective survivor functions might be as shown below. If
we still want to compare treatment groups, but also ’adjust’ for gender, a
stratified logrank test could be used. Suppose S

(l)
j (·) denotes the survival

function for group j in stratum l, and consider H0 : S
(l)
0 (·) = S

(l)
1 (·), l =

1, · · · , L.

tr. 0

tr.1
}

}

Females

Males
S(t)

t

tr. 1

tr. 0
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The stratified logrank test is useful when the distibution of the stratum vari-
able in the two groups is not the same, but the distribution of the relevant
covariates in each stratum is the same in both groups (within each stratum,
the groups have a comparable prognosis). The stratified logrank test can also
be useful to gain precision.

Construction

1. Separate data into L groups, where L = # levels of the categorical co-
variates on which you want to stratify (e.g., L = 2 when stratifying by
gender)

2. Compute O, E, V (say, O(l), E(l), V (l)) within each group, just as with
the ordinary logrank

3. Z =

L∑
l=1

(O(l) − E(l))√√√√ L∑
l=1

V (l)

apx
≈ N(0, 1) under H0.

Note 1: Intuitively, it should be clear how this statistic attempts to adjust
for the stratification variable and, assuming the [O(l), E(l), V (l)] are approxi-
mately uncorrelated, that the statistic will be approximately N(0, 1).

Note 2: If there are too many strata, the test could have poor power. In
part, this would be due to the feature of the logrank test that there is no
contribution for any 2x2 table once one of the Yl(τj) becomes zero.

Note 3: As we will later see, the stratified logrank test also arises as a score
test from Cox’s model. This relationship will also clarify the types of alter-
natives to H0 for which the stratified logrank test is directed.
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Weighted Logrank Test: Note that in the logrank test, Oj − Ej is a
measure of how h0(τj) and h1(τj) differ.

Suppose we wanted to compare groups, but in a way that ‘emphasized’ cer-
tain times more than others.

Let w1 ≥ 0, w2 ≥ 0, . . . , wK ≥ 0 be known constants. Then the weighted
logrank test is given by

Zw =

K∑
j=1

wj(Oj − Ej)√√√√ K∑
j=1

w2
jVj

and, under H0, Zw

apx
≈ N(0, 1).

Note:

- Choosing Wj = w (i.e., constant in j) yields the ordinary logrank test.

- Perhaps choose larger weights for those τj where a larger difference is
anticipated. But what does “difference” refer to?

h0(τj)− h1(τj), h0(τj)/h1(τj), S0(τj)/S1(τj) ??? (more later).

- Special case where wj = Y (τj) yields what is sometimes called the

Generalized Wilcoxon test.

- Since Y (τ1) > Y (τ2) > Y (τ3) > · · · , the Generalized Wilcoxon test
places (relatively) greater emphasis on early differences between h0(·)
and h1(·) than the logrank test.
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Example (revisited): Using Wj = Y (τj) yields Zw = −.97
(2-sided P = .33)

Several questions arise from these considerations:

• Is the weighted logrank asymptotically N(0, 1) under H0?

• The weights used above (i.e., Wj = Y (τj)) are data dependent (that is,
r.v.’s). How does this impact the asymptotic behavior of the test statis-
tic?

• How does one pick the Wj?

We will return to these issues in a later unit.
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Logrank Test for > 2 Groups: Now suppose that we wish to compare the
survival distributions of several (> 2) groups. Specifically, suppose there are
p+1 groups, denoted 0, 1, 2, . . . , p, and that we wish to test the hypothesis:

H0 : S0(·) = S1(·) = · · · = Sp(·)

e.g. Group 0 = placebo group

Group j = dose Dj of a drug j = 1, 2, . . . , p
(D1 < D2 < · · · < Dp)

Then an extension of the usual logrank test (where p = 1) for this setting is
given as follows (assume H0):

Construction

at risk
fail at τj at τj

Group 0 d0j Y0(τj)− d0j Y0(τj)
Group 1 d1j Y1(τj)− d1j Y1(τj)
Group 2 d2j Y2(τj)− d2j Y2(τj)

...
...

...
...

Group p dpj Yp(τj)− dpj Yp(τj)
Total dj Y (τj)− dj Y (τj)

p× 1 p× 1

0j =


d1j
d2j
...
dpj

 , Ej =


E1j

E2j
...

Epj

 where Eij =
Yi(τj)

Y (τj)
· dj

p× p

Vj =
(
V

(j)
kl

)
, where

V
(j)
kl =

djYk(τj)(Y (τj)−dj)(Y (τj)·1(k=l)−Yk(τj))
Y (τj)2(Y (τj)−1)
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Then with

O. =
k∑

j=1

Oj

E. =
k∑

j=1

Ej

V =
k∑

j=1

Vj,

Qp = (O. − E.)
T V−1 (O.− E.)

apx∼ χ2
p under H0

Note: This test is ‘omnibus’ in terms of how it combines the p+1 groups; i.e.,
it is not directed towards a dose-response, in contrast to the trend test below.

Logrank trend test: How can we modify this to test for a trend in the sur-
vival functions / hazard functions in the p+1 groups? For example, suppose
the groups have a natural ordering, such as increasing exposures to a toxic
substance or increasing doses of a drug. Then one might expect the risk of
failure to be monotone with exposure/dose and thus want to design a test
that is especially oriented towards this type of alternative to H0.

Let c = any p× 1 vector of constants. If O. − E.
apx∼ N(0,V) under H0,

↖ zero vector

cT (O. − E.)
apx∼ N(0, cTVc)

↪→ Trend test

Ztr =
cT (O. − E.)√

cTVc

apx∼ N(0, 1) under H0

e.g., take cj = Dj (dose used for group j), j = 1, 2, . . . , p.
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Using the relation of the (weighted) logrank test to the Cox partial likelihood
approach, one can test whether the trend is the only cause of variation be-
tween the p groups. Comparing the partial log likelihood of the model with
the trend variable and the model with the trend variable and p− 1 dummies
can be used as a check for deviation from the directional alternative assumed
by Ztr (this is the same as comparing the model with the trend variable and
the model with p dummies). We will come back to this in a later unit.

Several questions arise from these considerations:

• How to choose c? The choice of weights c depends in part on the set-
ting. For example, for some purposes the key scientific question might
be whether or not the risk is monotone with the p + 1 groups, while in
others it might be important to distinguish a linear versus supralinear
(e.g., quadratic) dose-response. It may be clear that we want the com-
ponents of c to be monotone, but against what specific alternative is a
particular choice of c optimal and what are the consequences of selecting
the ’wrong’ value of c? It will later be seen that the logrank trend test
arises as a likelihood score test from Cox’s proportional hazards model.
This link will not only provide the basis for the asymptotic behavior of
the trend test, but also clarify the implications for a particular choice of
the vector c.

• When to use Ztr vs Qp?

We return to this in a later unit.

Finally, we note that these variations of the logrank test can be combined.
For example, we can do a stratified version of the logrank test with P > 2
groups, a stratified trend test, etc.
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SAS commands for logrank test:

Consider the dataset AZT-ddI.dat. For dataset AZTddI, with “Tad” as the
time variable, “ad” as the censoring variable (ad=0 indicates censoring, ad=1
indicates event), and “rx” as the grouping variable, the following code does
a logrank test and a generalizedWilcoxon test comparing the 2 levels of group:

proc lifetest data=AZTddI;
time Tad *ad(0);
strata rx / test=(logrank Wilcoxon);

run;

Stratified logrank test, stratified by “gender”:

proc lifetest data=AZTddI;
time Tad *ad(0);
strata gender / group=rx;

run;

Now suppose that we have p + 1 > 2 levels in the group variable, such as 3
treatments. Then the same commands can be applied but one gets the p df
version of the logrank or wilcoxon test (including stratified or not stratified).

To get the trend test with (linear) weights: if the variable is numeric, the
unformatted values of the variable are used as the scores; otherwise, the
scores are 1, 2, ... , in the given order of the strata. For as ar a (categories
asymptomatic/aids-related-complex/aids) use e.g.:

proc lifetest data=AZTddI;
time Tad *ad(0);
strata as ar a / trend;

run;

13



STATA commands for logrank test:

After reading in the data and using the .stset command to define U and δ:

Suppose there are 2 groups and group is the variable defining group.

.sts test group or .sts test group,logrank: Either does a logrank test
comparing the 2 levels of group.

.sts test group,wilcoxon: This does the generalized wilcoxon test

.sts test group, logrank by(gender): This does the stratified logrank
test comparing the 2 levels of group, with stratification by gender

Now suppose that we have p + 1 > 2 levels in the variable group, such as 3
treatments. Then the same commands can be applied but one gets the p df
version of the logrank or wilcoxon test (including stratified or not stratified).

To get the trend test with (linear) weights (0,1,2,...,p), use:

.sts test group,trend

It will give both the p df test and the trend test.
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Exercises

1. For each of the five pairs of survival curves shown on page 2, sketch the
corresponding pairs of hazard functions.

2. For the data set in freireich.dat, compute by hand the logrank test for
comparing treatment groups by forming each 2x2 table and recording
the entries, and then computing the components of the test statistics.
Verify your answer by using STATA, SAS, or any of your favorite pro-
grams to compute the logrank test statistic.

3. Analyze the data in AZT-ddI (with U=Tad, and δ=ad). First, create a
new variable called cd4cat defined as 0 if cd4< 100, 1 if cd4 ∈ [100, 199]
and 2 if cd4 ≥ 200. Then:

(a) do a Kaplan-Meier plot by cd4cat

(b) do a logrank test of cd4cat = 0 vs cd4cat = 1

(c) do a Generalized Wilcoxon test of cd4cat = 0 vs cd4cat = 1

(d) do a stratified (by gender) logrank of cd4cat = 0 vs cd4cat = 1

(e) do a logrank test of cd4cat=0 vs cd4cat=1 vs cd4cat=2

(f) do a logrank trend test of cd4cat (=0,1,2)

(g) is there evidence in the data of a departure from linear trend?

(h) do a stratified (by gender) logrank trend test of cd4cat

4. What is the rationel behind choosing cT (O. − E.) for the trend test?
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5. An HIV clinical trial is in preparation comparing the treatments ABC+3TC
versus TDF+FTC. The efficacy endpoint will be composite: time until
virologic failure, time until HIV disease progression, and death, whichever
comes first.

(a) (5 points). How would you analyze the efficacy?

(b) (8 points). Suppose that the difference in the effect of these treat-
ments is expected to be higher in the first time period than at later
times. How could you adapt the method of (a) to get a test with
higher power?

(c) (10 points). Suppose you want to do a separate analysis for time to
first virologic failure or death, whichever comes first. What kind of
analysis would you propose? How would you define the failure time,
and what would you consider as censoring?

(d) (10 points). A separate analysis will be done for time to first viro-
logic failure. In this analysis, death is considered as censoring. What
assumption does this indicate? Please comment on this.

6. (25 points). Suppose that a subgroup analysis on survival indicates that
treatment effect has an opposite sign in men and women; e.g., in women
the side effects outweight the benefits, e.g., due to breast cancer risk.

(a) (10 points). What do you think will be the likely outcome of the
logrank test? Explain why.

(b) (10 points). What do you think will be the likely outcome of the
logrank test stratified by gender? Explain why.

(c) (5 points). Are type-1 errors with the above methods still ok?

16



Additional Reading and Comments

Tarone and Ware (1977) proposed the use of a weighted version of the lo-
grank test, and formal evaluation of the properties of such tests was developed
subsequently (see, for example, Fleming & Harrington, 1991, for a review).
Catherine Hill (1981) evaluated the loss in efficiency from using a stratified
logrank test. Despite the widespread use of stratified logrank tests, relatively
little attention appears to have been given to issues of efficiency and robust-
ness for this approach.
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