
BIO 244: Unit 7

Cox’s Proportional Hazards Model

In this unit we introduce Cox’s proportional hazards (Cox’s PH) model, give
a heuristic development of the partial likelihood function, and discuss adapta-
tions to accommodate tied observations. We then explore some specific tests
that arise from likelihood-based inferences based on the partial likelihood.
Asymptotic properties of the resulting estimators and tests will be covered
in later units.

7.1 Setting and PH Model: For each of n subjects we have the value of
some covariate vector Z and the survival outcome (U, δ) representing nonin-
formatively right-censored values of a survival time T . That is, for subject
i, Zi denotes the value of the covariate vector Z, and Ti and Ci denote the
underlying survival time and potential censoring time, respectively, and we
observe (Zi, Ui, δi), where Ui = min{Ti, Ci} and δi = 1[Ti ≤ Ci], and where
Ti ⊥ Ci | Zi. The reasons why noninformative censoring is defined by the
conditional independence of Ti and Ci, given Zi, are discussed later.

One way to model a relationship between Z and T is by assuming h(·) is
functionally related to Z.

e.g., T ∼ Exp(λZ)

where h(t) = λZ = eα+βZ = λ0e
βZ

(λ0 = eα).

Thus, we might assume that the Ti are independent with Ti ∼ Exp
(
λ0e

βZi
)
,

where Zi = value of Z for subject i.

Note: β = 0 in the example means λZ does not depend on Z, and thus
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that Z is not associated with T .

Let’s Generalize: Let h(t|Z) denote the h.f. for a subject with covariate Z.

Suppose that

h(t|Z) = h0(t)︸︷︷︸ · g(Z)︸︷︷︸
function of t, function of Z,
but not Z but not t.

This is sometimes called a “multiplicative intensity model” or “multiplicative
hazards model” or “proportional hazards model”. This factorization implies
that

h(t|Z = Z1)

h(t|Z = Z2)
=

g(Z1)

g(Z2)
= independent of t

−→ “proportional hazards” (PH)! That is, the hazard ratio correspond-
ing to any 2 values of Z is independent of time.

Important Special Case: g(Z) = eβZ . This gives

h(t | Z) = h0(t) · eβZ (7.1)

⇒ Cox’s proportional hazards (Cox’s PH) Model.
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Here
h(t|Z = Z1)

h(t|Z = Z2)
= eβ(Z1−Z2).

For scalar Z, eβ = hazard ratio corresponding to a unit change in Z.

In general, β = 0 ⇔ Z not associated with T .

E.g., if

Z =

(
Z1

Z2

)
Z1 =

{
0 Rx (treatment) 0
1 Rx (treatment) 1

Z2 =

{
0 female
1 male

and β = (β1, β2),

then

h(t|Z) =


h0(t) Rx 0, female

h0(t)e
β1 Rx 1, female

h0(t)e
β2 Rx 0,male

h0(t)e
β1+β2 Rx 1,male
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7.2 Inference: How can we base inferences about β on (7.1)?

• Assume a parametric form for h0(t), conduct parametric analysis
(e.g., h0(t) = λ0).

• Allow h0(t) to be arbitrary.
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The latter is more general, but how do we carry out inference?

Note: (7.1) implies

S(u|Z) = (S0(u))
eβZ ,

where S0(u) = e−
∫ u

0
h0(t)dt

= survival function for someone with Z = 0
= S(u|0).

Also, f(u|Z) = h(u|Z) S(u|Z).

Thus, given n independent observations from (7.1), say (ui, δi, zi), the likeli-
hood function is

L(β, h0(·)) =
∏
i

(
f(ui|zi)δi S(ui|zi)1−δi

)
=

∏
i

(
h(ui|zi)δi S(ui|zi)

)
=

∏
i

((
h0(ui)e

βzi
)δi (

e−
∫ ui
0

h0(t)dt
)eβzi

)
= function

(
data, β, h0(·)

)
.

If we allow h0(·) to be arbitrary, the “parameter space” is

H×Rp =

{
(h0(·), β) : h0(u) ≥ 0 for all u,

∫ ∞

0

h0(u) = ∞ and β ∈ Rp

}
,

where p is the dimension of the vector β. The condition∫ ∞

0

h0(u)du = ∞
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ensures that S0(∞) = 0.

Note: The primary goal in many applications is to make an inference about β,
and the underlying hazard h0(·) is a nuisance parameter (actually, a nuisance
function).

Inferences in such settings are commonly called “semi-parametric”. Standard
likelihood theory, based on Euclidean parameter spaces, does not apply here,
and thus other methods are needed.
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Cox’s Idea: Try to factor L(β, h0(·)) as

L(β, h0(·)) = L1(β)︸ ︷︷ ︸ · L2(β, h0)︸ ︷︷ ︸
function some

of β, whose function of h0(·)
maximum (β̂) and β which
enjoys nice contains
properties relatively little

(β̂
P→ β) information

(
√
n(β̂ − β)

L→ N ) about β.
although
perhaps
inefficient

Then, Cox tells us to base inferences about β on the partial likelihood function
L1(β).

Aside: Aspects of this idea are not new. For example, with linear rank
tests comparing two groups (and where censoring cannot occur),

suppose

X1, . . . , Xn independent r.v.’s

Z1, . . . , Zn indicators of group Zi =

{
0 group 0
1 group 1

F (Xi | Zi = 0) = F0(x)

F (Xi | Zi = 1) = F1(x),

H0 : F0(·) = F1(·).
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Note: X = (X1, . . . , Xn) and Z = (Z1, . . . , Zn)
are equivalent to knowing Z, r (“which one”), and X( ) (“its value”)
where X( ) = (X(1), X(2), . . . , X(n)) and r = (r1, . . . , rn),
where ri = rank of Xi.

Likelihood = f(X,Z) = g(X( ), r,Z) = g1(r,Z)︸ ︷︷ ︸ ·g2(X( ) | r,Z)

↖
rank tests based on this

the Z and their

corresponding ranks.

=⇒ Since (r,Z) is a subset of the data, inferences based on g1(·) will be
valid (though possibly inefficient).

Back to Cox → Cox’s idea is similar, but what he proposes for L1 is not
in general the pdf/pmf of a subset of the data, as above with rank tests.

∴ L1(β) called a partial likelihood.

• What is L1(β) and why is it intuitively reasonable?

−→ Assume there are no tied observations and no censoring.

Define

τ1 < τ2 < · · · = distinct times of failure

Rj = risk set at τj = {ℓ | Uℓ ≥ τj},
and

Z(j) = value of Z for the subject who fails at τj .
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Note that knowledge of the τj, Rj, and Z(j) allows us to reconstruct the
original data for this setting (recall we assume no censoring for now).

Then

L1(β)
def
=

∏
j


eβZ(j)∑

l∈Rj

eβZl

 . (7.2)

Example: Z binary n = 5,

(Ui, δi, Zi) = (16, 1, 1), (13, 1, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

τ1, . . . , τ5 = 11, 12, 13, 16, 21

R1 = {1, 2, 3, 4, 5}, R2 = {1, 2, 3, 5}, R3 = {1, 2, 3}
R4 = {1, 3}, R5 = {3}

Z(1) = 0, Z(2) = 1, Z(3) = 0, Z(4) = 1, Z(5) = 1

L1(β) = · · · =

(
1

3eβ + 2

)(
eβ

3eβ + 1

)(
1

2eβ + 1

)(
eβ

2eβ

)(
eβ

eβ

)
= function of β.
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7.3 Heuristic Justification of L1(β) and Modification to Allow Ties

Suppose first there are no tied or censored observations. Then the partial
likelihood arises from two different arguments:

1. Conditioning Argument: Consider jth term in (7.2)

eβZ(j)

/∑
ℓ∈Rj

eβZℓ . (7.3)

Conditional on surviving up to just prior to τj (being in risk set Rj), the
probability of someone with covariate value Z failing at t = τj is

h0(τj)e
βZ .

Conditional upon Rj and the fact that someone fails at t = τj, the
probability that it is someone with covariate value Z∗ (Z∗ = Zℓ for some
ℓ ∈ Rj) is

h0(τj)e
βZ∗∑

ℓ∈Rj

h0(τj)e
βZℓ

=
eβZ

∗∑
ℓ∈Rj

eβZℓ

.

Thus, the contribution to L1 from the observation that Z(j) is the co-
variate value of observed failure is (7.3).

The overall partial likelihood, L1, is obtained by multiplying these con-
tributions.

2. Rank Statistic Argument: When there are no ties or censoring,
(U, δ, Z) is equivalent to (U( ), r,Z) and it can be shown that L1(β) =
marginal distribution of r for given Z’s (see appendix).

10



What if there is censoring?

It is easily accommodated. In fact, (7.2) also applies if there is censoring.

Without censoring, each successive Rj has one less element; with censoring,
Rj+1 can have ≥ 1 fewer elements than Rj. The rank statistic arguments
become problematic, however, in the presence of censoring.

What about tied failure times?

For continuous Ti this happens with probability zero; but in the real world
it is common.

−→ Several ad-hoc modifications to (7.2) have been considered.

Most popular one (attributed to Breslow):

τ1 < τ2 < · · · < τk distinct failure times.

dj = # failures at τj.

Z
(1)
(j) , Z

(2)
(j) , . . . , Z

(dj)

(j) = values of Z for the dj subjects who fail at τj.

Rj = as before.

L1(β) =
K∏
j=1


dj∏
i=1


eβZ

(i)
(j)∑

ℓ∈Rj

eβZℓ


 . (7.4)

Idea: treat the dj failures at τj separately, using (7.2),
but use the same risk set for each.
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7.4 Inferences based on Partial Likelihood: Above is the most common
form of Cox’s Partial Likelihood.

Idea: proceed as if this were the likelihood,

– maximizing value = β̂ (“semiparametric MLE”; not obtainable in closed
form)

– approximate variance of (β̂) by inverse of observed information from L1

→ use Wald test, score test, LRT as in ordinary ML settings.

Note: When Z is scalar, it is easily verified that:

U(β) =
∂ lnL1(β)

∂β
=

k∑
j=1


 dj∑

i=1

Z
(i)
(j)

− djZ̄j(β)


where Z̄j(β)

def
=

∑
ℓ∈Rj

Zℓe
βZℓ

∑
ℓ∈Rj

eβZℓ

= weighted average of the Z in Rj˙

Î(β) =
−∂2 lnL1(β)

∂β2
=

K∑
j=1

dj


∑
ℓ∈Rj

Z2
ℓ e

βZℓ

∑
ℓ∈Rj

eβZℓ

− Z̄j(β)
2


=

K∑
j=1

dj

(∑
ℓ∈Rj

ω
(j)
ℓ

(
Zℓ − Z̄j(β)

)2)
,

where ω
(j)
r = eβZr∑

ℓ∈Rj

eβZℓ
.
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From these we can do Wald, LRT, or score tests.

e.g.,

Wald based on β̂
apx
≈ N

(
β, Î−1(β̂)

)
Score Test of H0 : β = 0: based on assuming U(0)/

√
I(0) ≈ N(0, 1) under

H0:

U(0) = · · · =
k∑

j=1


dj∑
i=1

Z
(i)
(j) − dj · Z̄j(0)


Z̄j(0) =

∑
ℓ∈Rj

Zℓ

/∑
ℓ∈Rj

1

= average value of the Z in Rj.

Special Case

Two-sample problem

Zi =

{
0 treatment 0
1 treatment 1.

Then
U(0) =

∑
j

(Oj − Ej),
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where Oj =

dj∑
i=1

Z
(i)
j = # subjects in group 1 that fail at τj

Ej = dj · Z̄j(0) = dj · Y1(τj)
Y (τj)

,

where Y1(τj) = # in group 1 at risk at τj

Y (τj) = # at risk at τj

−→ same as numerator of logrank statistic!!!

The approximate variance of U(0) is given by I(0), and it can be shown that

Î(0) = · · · =
∑
j

V ∗
j ,

where V ∗
j =

Y (τj)− 1

Y (τj)− dj
· Vj (Vj = logrank term).

Often,
Y (τj)− 1

Y (τj)− dj
≈ 1 (exact if no ties).

Thus, logrank test can be viewed as arising from a Cox PH model as a score
test. This connection is very important. It tells us that

• Logrank test is ‘oriented’ to PH alternatives

• Theoretical justification of its asymptotic distribution, provided we can
show L1(β) has properties of real likelihood.

(More later.)
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Exercises

1. Construct an example where T ⊥ C | Z, where Z is a covariate, but
where T and C are not independent. This shows that informative censor-
ing can be ’induced’ from a noninformative setting by failing to control
for a covariate.

2. Given h (t|Z) = h0(t) g(Z), find an expression for S(t|Z) in terms of
g(·) and h0(·).

3. Suppose h (t|Z) = h0(t) e
β1Z1+β2Z2+β3Z3 where

Z1 =

{
0 tr. 0
1 tr. 1

Z2 =

{
0 female
1 male

and Z3 = Z1 · Z2.

What values of β1, β2, β3 correspond to

(a) treatment hazard ratio same in males as in females

(b) no treatment effect in males, but an effect in females

(c) no treatment effect

4. Verify the expression for L1(β) at the bottom of page 8.

5. Verify expressions for U(β) and Î(β) on page 11, and for U(O) on
page 12.

6. Consider a regression problem where X denotes treatment group (=0
or 1) and there is a single covariate Z. Suppose that the distribution
of censoring does not depend on Z or on X, that the observations are

noninformatively censored, and that X ⊥ Z. Let p
def
= P (X = 1) and

assume that Z has the U(0,1) distribution.
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(a) Derive expressions for the marginal hazard functions h(t | X = 0)
and h(t | X = 1) in terms of the f(t|X,Z).

(b) Consider use of the ordinary logrank test to compare the treatment
groups (ignoring any information about Z). Show that this is asymp-
totically a valid test of the hypothesis H0 : h(t | X = 0, Z) = h(t |
X = 1, Z) for all t and Z, where h(t | X,Z) denotes the hazard
function at time t for someone in treatment group X and with co-
variate value Z. Make sure that you prove the conditions that you
need for the logrank test to be valid.

(c) Now suppose that h(t | X,Z) is given by

h(t | X,Z) = h0(t)e
αX+βZ . (1)

An alternative test of H0 can be obtained by the partial likelihood
score test of α = 0 based on fitting (1). Assuming (1) holds, how
would you expect the efficiency of this test of H0 to compare to that
of the logrank test from part (b)? Give a heuristic justification for
your answer.

7. The survival curves in this question are in an article in Science, 1994,
volume 265, “Reduced rate of disease development after HIV-2 infec-
tion as compared to HIV-1”, by Marlink et al, page 1589. HIV-2 is
a close relative of the prototype AIDS virus, HIV-1. The article com-
pares the prognosis of women with HIV-1 and HIV-2 in Dakar, Senegal.
Of course, HIV-1 and HIV-2 infection has not been randomly assigned.
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(a) What are the assumptions behind the Kaplan Meier estimator? And
for the logrank test? How can results be interpreted? For this
question, we are not interested in what tests are oriented towards
but what are the fundamental assumptions and how can the results
be interpreted (like: what exactly are you estimating and testing).

• (10 points). Can you come up with an example when these assump-
tions are not met, other than mentioned in the questions here?

(b) Suppose it is known that a measured confounding covariate X, e.g.
categorized distance to a clinic, is not equally distributed among
HIV-1 and HIV-2 infected women. What kind of analysis would you
propose to test whether HIV-1 and HIV-2 have the same impact on
AIDS free survival?

(c) Again, suppose it is known that a measured confounding covariate
X, e.g. categorized distance to a clinic, is not equally distributed
among HIV-1 and HIV-2 infected women. What kind of model
would you propose for the hazard of failure? Propose two models
and compare them.
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(d) Suppose that 0 indicates the time these women first come to a clinic.
If women with HIV-2 have fewer symptoms, they may show up later
at the clinic for their first visit. How would that affect your inter-
pretation of the figures on the previous page?

(e) ((Just a note: this kind of bias may not occur in the study this
article is based on. Since February of 1985, all women registered
as commercial sex workers at a specific hospital in Dakar, Senegal,
have been serologically screened for exposure to HIV-1 and HIV-2
during biannual visits. The figures on the previous page are based
on them.))

(f) Twelve women had both HIV-1 and HIV-2 infection. What happens
to the properties of the logrank test if we put them in both groups?

(g) Eighty-five women moved from Dakar without health information
follow up. How could that affect the estimates?

(h) Is it likely that Cox’s proportional hazards model holds in the three
figures in the paper? Describe this for each figure separately.

(i) Next to the figures in the paper, you can see the logrank test and
the Wilcoxon test. What is the difference?
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Appendix: Equivalence of L1(β) to marginal distribution of rank
statistic when there are no ties or censored observations

This result was shown by Kalbfleisch & Prentice (1973). Suppose Z is a
scalar. Let r = r1, . . . , rn denote the rank statistic; i.e., r1 = 4 means that
subject 1 has the 4th smallest failure time. Define Z(1), . . . , Z(n) by Z(ri) = Zi ;
i.e., Z(i) is the covariate value for the person with the ith smallest failure time.
The pdf of survival time for someone with covariate Z is given by

f (t|Z) = h0(t) e
βZ · exp

(
−eβZ H0(t)

)
.

The pmf of r for given constants Z1, Z2, . . . , Zn, P (R = r|Z1, . . . , Zn), can
thus be expressed as

P (r) =

∫
Rn:R=r

n∏
j=1

f(tj|Zj) dt1 · dt2 . . . dtn

=

∫
S

n∏
j=1

f(tj|Z(j)) dt1 · dt2 · · · dtn,

where

S = {(t1, t2, . . . , tn) : 0 ≤ t1 < t2 < · · · < tn} ,

and Z(rj) = Zj. Then

P (r) =

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

n∏
j=1

{
h0(tj) e

βZ(j)e−e
βZ(j)H0(tj)

}
dtn · dtn−1 · · · dt1

=

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−2

n−1∏
j=1

{ }
[∫ ∞

tn−1

h0(tn) e
βZ(n) exp

(
−eβZ(n)H0(tn)

)
dtn

]
dtn−1 · · · dt1
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The term in square brackets equals

exp
{
−eβZ(n)H0(tn−1)

}
;

i.e., the probability that someone with hazard function h0(u)e
βZ(n) survives

beyond tn−1.

Thus, P (r) becomes

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−2

n−1∏
j=1

{ } · e−H0(tn−1) e
βZ(n)

dtn−1 · · · dt2dt1

=

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−3

n−2∏
j=1

{ }
[∫ ∞

tn−2

h0(tn−1) e
βZ(n−1) e−H0(tn−1) e

βZ(n−1)

· e−H0(tn−1) e
βZ(n)

dtn−1

]
dtn−2 · · · dt2

=
eβZ(n−1)

eβZ(n−1) + eβZ(n)
·
∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−3

n−2∏
j=1

{ } · [ ] dtn−2 · · · dt2dt1,

where

[ ] =

∫ ∞

tn−2

h0(tn−1)
(
eβZ(n−1) + eβZ(n)

)
e
−H0(tn−1)

[
e
βZ(n−1)+e

βZ(n)
]

dtn−1

= e
−H0(tn−2)

[
e
βZ(n−1)+e

βZ(n)
]
.
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Thus,

P (r) =

(
eβZ(n−1)

eβZ(n−1) + eβZ(n)

) ∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−3

n−2∏
j=1

{ } · e−H0(tn−2)
[
e
βZ(n−1)+e

βZ(n)
]

dtn−2 · · · dt2dt1.

Continuing in this way, we see that

P (r) = · · · =
n−1∏
j=1


eβZ(j)

n∑
ℓ=j

eβZ(ℓ)


=

n∏
j=1


eβZ(j)∑

ℓ∈Rj

eβZℓ

 ,

and hence that P (r) = L1(β). Thus, when there is no censoring or tied data,
Cox’s partial likelihood is a “real” likelihood – i.e., the marginal density of
the rank statistic r.
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