
BIO 244: Unit 9

Cox’s Model: Extensions

In this unit we consider several extensions of the usual Cox PH model that
are both useful in practice and establish links with variations of the logrank
test. Large-sample properties of the extensions will be covered in later units.
The extensions considered are:

• extending Cox’s model to include strata

• Cox’s model for comparing P+1 groups; trend tests

• allowing time-varying covariates

• estimating the underlying cumulative hazard H0(t)

• some words on informative censoring

9.1 Stratified Cox Model:

Suppose first that Z and W are binary covariates.

e.g., Z = treatment group =

{
0 group 0
1 group 1

and W = gender =

{
0 female
1 male,

and we want to assess the association between Z and survival while control-
ling for W . One way to do this is to fit Z and W as covariates in Cox’s model,
and then test that the regression coefficient corresponding to Z is zero. That
is, fit the model

h(t|Z,W ) = h0(t)e
β1Z+β2W ,

1



and then test the hypothesis that β1 = 0. Note that with this model:

trmt HR =
h(t|Z = 1,W )

h(t|Z = 0,W )
= eβ1 and gender HR =

h(t|Z,W = 1)

h(t|Z,W = 0)
= eβ2.

Thus, hazard functions of the 4 types of individuals are proportional.

Alternatively, consider the following model:

Females (W=0): h(t|Z,W = 0) = h0(t)e
β1Z

Males (W=1): h(t|Z,W = 1) = h1(t)e
β1Z (9.1)

−→ treatment has same (eβ1) hazard ratio within each level of W , but the
underlying hazards for females (h0(·)) and males (h1(·)) are arbitrary.

We can also write this model as:

h(t|Z,W ) = hW (t)eβZ , for Z = 0, 1, W = 0, 1.

Let’s generalize: suppose that:

Z = any covariate (vector or scalar)

W = some categorical covariate with L levels (1,. . ., L),

and consider the model:

h(t|Z,W ) = hW (t)eβZ .

That is,

h(t | Z,W = l) = hl(t)e
βZ l = 1, . . . , L.
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This is called a stratified Cox proportional hazards model. The L levels
of W can have arbitrary underlying hazards, yet within each the treatment
relative risk is eβ.

How do we make an inference about β for this model? Consider the following:

For the subset of persons with W = l, form the usual PL, say L
(l)
1 (β). Then

form an overall partial likelihood function as:

Lstrat (β) =
L∏
l=1

L
(l)
1 (β).

• Note the simple form of this stratified partial likelihood function.

• When Z = binary, the resulting partial likelihood score test of β = 0
reduces to stratified logrank test (Exercise).

• The model is more general than h0(t)e
β1Z+β2W (in what way?).

• We study the asymptotic properties of this approach in a later unit.

9.2 Cox Model for Comparing P+1 Groups:
Suppose that W is a categorical covariate with P+1 levels (say, W=0,1,...,P).
One way to compare the survival distributions of the P+1 groups is by a
logrank test, yielding a test statistics that has an approximate chi-square
dsitribution with P df under the null hypothesis. Alternatively, define the P
binary covariates Z1, · · · , ZP by

Zj = 1[W = j] for j = 1, 2, · · · , P .

Consider fitting a Cox model with covariates Z1, · · · , ZP , and then testing the
hypothesis (say, using the partial likelihood score test) that the P regression
coefficients are simultaneously zero; that is, β1 = · · · = βP = 0.
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This test is equivalent to the logrank test for comparing the P+1 groups. To
verify this, compute the Px1 partial likelihood score vector of partial deriva-
tives of the log partial likelihood with respect to the P regression coefficients,
and then evaluate it at β1 = · · · = βP = 0. The score test is based on the
quadratic form resulting from this vector and the observed information ma-
trix evaluated at β1 = · · · = βP = 0. This will be seen to be the same as
the logrank test for P+1 groups. By making this “connection” between a
likelihood-based test and the logrank test, we can infer that the logrank test
for P+1 groups is oriented towards alternatives where the P+1 groups have
proportional hazard functions. Another advantage of making this connection
is that the Cox model provides a way of generalizing the logrank test to ad-
just for other covariates.

Trend Test: Next suppose the categories of W (=0,1,2,...,P) are ordinal,
such as increasing doses of the same drug, and let Z∗ be the scalar covariate
defined by:

Z∗ = cj if W = j, j = 0, 1, ..., P ,

where c0 = 0 and c1, · · · , cP are some constants. Suppose we fit a Cox pro-
portional hazards model with the scalar covariate Z∗ and denote the corre-
sponding regression coefficient by β∗. Then it can be shown that the partial
likelihood score test of β∗ = 0 is equivalent to the logrank trend test using
weights c1, · · · , cP . For example, choosing cj = j gives the most commonly
used version of the logrank trend test (and the default value in STATA), and
corresponds to a proportional hazards model where the regression coefficient
β represents the log hazard ratio between consecutive values of the ordinal
covariate. That is,

h(t | W = j + 1)

h(t | W = j)
= eβ for j = 0, 1, · · · , P − 1 .

This connection shows that the logrank trend test is oriented towards the al-
ternatives given by this proportional hazards model. We return to the choice
of cj in a later unit. However, it is worth noting that another nice feature
of this connection between the logrank test and inferences from Cox’s model
is that we can now easily extend the logrank trend test to adjust for other
covariates by simplying adding these to the Cox proportional hazards model.
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Let’s illustrate some of these methods with an example using the AZT-ddI
data set. As before, we focus on the subjects receiving AZT (rx=0) or 500
mg ddI (rx=1), and who have not yet develop AIDS at the time of enrollment
(as-ar-a<2). However, to intentionally ’skew’ the data, we only consider those
ddI patients with a cd4 count of at least 30. This gives a total of 209 AZT
patients and 190 ddI patients. Consider the binary covariate W denoting
grouped cd4 count:

W =
Grouped cd4
(“gcd4”) =

{
0 cd4 ≤ 100
1 cd4 > 100.

Of the 209 subjects that received AZT, 96 had a cd4 ≤ 100 and 113 had a
cd4 > 100. Of the 190 subjects receiving ddI, 67 had a cd4 ≤ 100 and 123
had a cd4 > 100. We consider several different ways of testing the hypothesis
of no difference between the AZT and ddI groups. Here, failure is taken
to be time until the development of AIDS or death, whichever comes first,
represented by the variables Tad and ad. For each method, we present the
resulting chi-square statistic (say Q) and p-value.

1. Ordinary logrank test: Q=15.18, P=.0001

2. Cox model with covariate rx; Wald test: Q=14.44, P=.0001

3. Cox model with covariate rx; LR test: Q=15.46, P=.0001

4. Stratified (by W) logrank test: Q=8.46, P=.0036

5. Stratified (by W) Cox model with covariate rx; Wald test: Q=8.20,
P=.004

6. Stratified (by W) Cox model with covariate rx: LR test: Q=8.66,
P=.0033

7. Cox model with covariates rx and W; Wald test: Q=8.41, P=.004

8. Cox model with covariates rx and W; LR test: Q=8.89, P=.003

Note that tests 1-3, which do not adjust for cd4, are asymptotically equiva-
lent. Tests 4-6 do adjust for cd4 and are asymptotically equivalent. Tests 7-8
also adjust for cd4, but in a different way, and are asymptotically equivalent.
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Given the imbalance between the AZT and ddI groups, one would tend to
place greater trust in tests 4-8. Of these, tests 4-6 make fewer assumptions.
However, in this example, one gets similar results with tests 4-6 as with tests
7-8.

Now let’s consider the covariate W* which represents grouped age, with
W*=0,1,2 if the patient’s age is 30 or less, 31-40, or over 40, respectively.
Also, define W1*=1[W*=1] and W2*=1[W*=2]. Consider testing the hy-
pothesis that grouped age is not associated with time until AIDS or death
in the AZT-ddI dataset, but without creating the imbalance by leaving out
some patients randomized to ddI. Below we report the resulting chi-square
statistics and p-values.

1. Logrank test for W*: Q (2 df)=4.16, P=.125

2. Cox model with covariates W1*, W2*: (LR test) Q (2 df)=4.69, P=.0957

3. Logrank trend test for W*: Q (1 df)=3.04, P=.081

4. Cox model with covariate W*; Wald test: Q (1 df)=3.03, P=.082

5. Cox model with covariate W*, LR test: Q (1 df)=3.07, P=.080

Note that tests 1 and 2 are asymptotically equivalent, and that tests 3-5 are
asymptotically equivalent. Tests 3-5 can be expected to be more powerful if
there is a trend in the age-response relationship. They are directed towards
alternatives where there is a trend. We return to the relative properties of
these types of tests later in the course.
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9.3 Time-Varying (or Time-Dependent) Covariates

In some settings, we want to assess association between a time-

varying covariate, say Z(t), and survival:

Example 9.1 Z(t) = air pollution level at time t

T = time until asthma attack

h(t|z(t)) = h0(t)e
β·Z(t)

−→ on a given day (t), the hazard function for an asthma attack is

h0(t)︸ ︷︷ ︸ · eβ·(pollution level on that day).

baseline hazard
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Example 9.2: T = time to death,

Z(t) =

{
0 if no opportunistic infection (OI) by time t

1 if an opportunistic infection occurs on/before t

(9.2) h(t|Z(t)) = h0(t)e
βZ(t) =

{
h0(t) if Z(t) = 0

h0(t)e
β if Z(t) = 1
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−→ for a particular patient, his or her hazard function begins as

h0(t) but “jumps” to h0(t)e
β at the random time he or she has an

opportunistic infection

−→ different patients will “jump” at different times, but all will

begin with h0(t) and, when they jump, jump to h0(t)e
β.
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Example 9.3

Z1 =
treatment
group =

{
0 treatment group 0

1 treatment group 1

Z2(t)
def
= Z1 · ln t

h (t | Z1, Z2(t)) = h0 (t) e
β1Z1+β2Z2(t)

=

{
h0(t) treatment group 0

h0(t)e
β1+β2·ln t treatment group 1.

Treatment hazard ratio = eβ1+β2·ln t.

−→ Note that Z2(t) is not really a new covariate but a way to allow

for a nonproportional hazards relationship between the 2 levels of Z1.

NOTE:

• β2 = 0 ↔ h(t|treatment 1)

h(t|treatment 0)
= ind. of t (i.e., PH)

• β1 = 0 | β2 = 0 ⇐⇒ no treatment difference, given PH

• β1 = β2 = 0 ⇐⇒ no treatment difference.

9



Inference with time-dependent Cox proportional haz-

ards model: Computationally, inference for time-dependent co-

variates proceeds just as with fixed covariates, except that at each

risk set, we evaluate the value of the time-dependent covariate for a

subject at that time point. Properties of time-dependent Cox models

can be more complex, as we will see later.

10



9.4 Estimating H0(·):

• Until now, and in most applied settings, the focus is on making

inferences about the regression coefficient β, as this describes as-

sociation between Z and T .

• However, we sometimes are also interested in estimating H0(t).

Why?

– Learn about its shape (e.g., does h0(t) ↑ with t?)

– Prediction:

S(t|Z) = e−eβZH0(t).

To estimate this, also need an estimate of

H0(t) =

∫ t

0

h0(u) du.

– Model testing (more later).

No unique correct way to estimate h0(t).

11



Most popular (proposed by Breslow):

Ĥ0(t) =
∑
τj≤ t

∆̂H0(τj),

where

∆̂H0(τj) =
dj∑

lϵRj

eβ̂Zl

.

NOTE: This is a discrete estimator.

NOTE: When β̂ = 0 it reduces to dj/Y (τj), as in the Nelson-Aalen

estimator of H0(·).

Heuristic Justification: Consider risk set, Rj, at τj.

For lϵRj, conditional probability of failing at τj (given not failed

before) is

h0(τj)e
βZl.

The “average” probability of failing at τj for the Y (τj) persons at

risk is

1

Y (τj)

∑
lϵRj

h0(τj)e
βZl = h0(τj) ·

∑
lϵRj

eβZl

Y (τj)
.

Observed proportion failing = dj/Y (τj). Equating these and equat-

ing h0(τj) to ∆̂H0(τj) gives:
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∆̂H0(τj) ≈ dj

/∑
lϵRj

eβZl .

Example: n = 5

i : 1 2 3 4 5

Ui : 2 8 13 5 1

δi : 1 1 1 0 1

Zi : 0 0 1 1 1



τ1 = 1 R1 = {1, 2, 3, 4, 5}

τ2 = 2 R2 = {1, 2, 3, 4}

τ3 = 8 R3 = {2, 3}

τ4 = 13 R4 = {3}

β̂ = −.834

eβ̂Z =

{
1 z = 0

d1 = d2 = d3 = d4 = 1.
.43 z = 1

Thus,

∆̂H0(τ1) =
1

2(1) + 3(.43)
= .3

∆̂H0(τ2) =
1

2(1) + 2(.43)
= .35

∆̂H0(τ3) =
1

1 + .43
= .70

∆̂H0(τ4) =
1

.43
= 2.33
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=⇒ Ĥ0(t) =



0 t < 1

.3 1 ≤ t < 2

.65 2 ≤ t < 8

1.35 8 ≤ t < 13

3.68 13 ≤ t.

NOTE: Ĥ0(t), and thus Ŝ(t|Z), is a step function.
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9.5 Informative censoring

In the presence of informative censoring, the standard methods to fit

a Cox proportional hazards model can be biased. There exist meth-

ods that lead to consistent, asymptotically normal estimation of the

parameters in a Cox proportional hazards model in the presence of in-

formative censoring. However, these methods are not routinely used.

The methods are described in e.g. Robins (1993), Robins and Rot-

nitzky (1992) and Robins and Finkelstein (2000). The key element

of these methods is in the use of time-dependent surrogate marker

data. Their main assumption is that given the surrogate marker data

up to a certain time point and the baseline covariates Z, censoring

in the next small time interval is independent of the survival time

T . This is called Missing At Random (MAR). In the case of non-

informative censoring, these methods can be more efficient than the

standard methods covered in this and the following units. We may

come back to that later in the course.
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Exercises

1. Verify that the stratified logrank test statistic essentially arises

as a score test from Cox’s stratified PL.

2. Suppose you wished to modify (9.1) on page 2 to allow the treat-

ment effect to be different among men than among women.

• Suggest a model to do this.

• In your model, what hypothesis corresponds to no treatment

effect?

• What hypothesis corresponds to an equal treatment HR in

men and women?

3. Consider the second example of a time-varying covariate (page

8). How might you modify the model (9.2) to allow the size of

the jump to depend on the time until the opportunistic infection

occurs?

4. Compute and plot Ŝ(t|Z = 0) and Ŝ(t|Z = 1) for the example

on pages 11–12.

5. Consider a set of censored survival data from a randomized clini-

cal trial for which we have information on 2 covariates: Z1=treatment

group (=0 or 1) and Z2= disease stage at the time of random-

ization (=1, 2, or 3). We wish to compare the treatment groups.

Three possible tests of treatment group equality are (i) the or-

dinary logrank test; (ii) the stratified (by disease stage) logrank
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test; and (iii) the Wald test of β1 = 0 resulting from fitting a PH

model with covariates Z1 and Z2.

For each test, briefly indicate the types of situations where you

might expect it to have better power than the other 2 tests.

6. Consider the same data setting as in the preceding problem, and

let h(t | Z1, Z2) denote the hazard function for someone with

covariate values Z1 and Z2.

(a) Propose a model for h(t | Z1, Z2) which allows the magnitude

of the treatment effect to vary with disease stage but which, for

given Z1, is unrestrictive about the hazards for levels of Z2.

(b) Given your model, describe a test for the hypothesis that

the magnitude of the treatment effect does not vary with disease

stage. (You need not give details.)

7. Suppose you are studying elderly married couples and wish to

know whether health outcomes in a wife might affect the mor-

tality risk of her husband. Suppose your data set arises from the

prospective follow-up of couples from the age of 65 onwards who

are generally healthy at the start of follow-up. For any given

couple, let T denote the time (from start of follow-up) until the

husband dies, and suppose T can be right- censored, so that you

really observe the pair (U, δ) instead of T . During follow-up

the wife could be hospitalized and/or die, and we wish to assess

whether and how either of these events might be associated with

T . Suppose that Z1(·) denotes a covariate process for which

Z1(t) equals zero if the wife is not hospitalized before time t and

equals 1 if she is hospitalized on or before time t, where time is

defined from the start of follow-up. Similarly, suppose that Z2(·)
denotes the process for which Z2(t) equals zero if the wife is alive
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at time t and equals 1 if she dies on/before time t. Thus, at any

time point t, the wife will be in one of 4 states: alive with no prior

hospitalization, alive with a prior hospitalization, dead without

a prior hospitalization, or dead with a prior hospitalization.

(a) Propose a model that allows the husband’s hazard of death to

depend on the wife’s hospitalization/survival status. Clearly

indicate how your assumed hazard function at an arbitrary

time t depends on the history of the covariate processes Z1(·)
and Z2(·) up to time t.

(b) In your proposed model, how would you express the situa-

tion that a wife’s hospitalization is not associated with the

husband’s risk of death, but her death is associated with the

husband’s risk of death?

(c) Ignore, for the moment, the wife’s hospitalization status and

consider only the possible association between her death (that

is, Z2(·)) and the husband’s risk of death. Using 2x2 contin-

gency table methods, as we did when introducing the logrank

test, propose a statistical testing procedure (a statistic and a

criteria for computing a p- value on the basis of this statistic)

for assessing the association between Z2(·) and T . Do not

try to formally justify the test, but say in words why you

think it would be reasonable.

(d) Next suppose that you again wanted to assess the association

between a wife’s death and the husband’s risk of death, but

that now you wanted to adjust for whether the wife was or

was not hospitalized (as this might also be associated with

the husband’s failure). Describe how you might modify the

approach in part (c) to do this.
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